文章目录
- 准备
- 集群安装
- 1、创建目录
- 2、解压缩安装包
- 3、修改配置文件
- 4、启动
- 5、查看集群是否安装成功
- 测试Kafka
- 1、创建测试mytopic
- 2、查看mytopic副本信息
- 3、查看已创建topic列表信息
- 4、创建Producer
- 5、创建Consumer
- 6、删除mytopic
- 7、停止kafka
准备
1、首先安装zookeeper作为为集群提供高可用
2、准备kafka按装包kafka_2.11-2.1.1.tgz
3、准备三台机器hadoop-slave1、hadoop-slave2、hadoop-slave3
集群安装
1、创建目录
创建kafka和kafkalogs目录,并将压缩包存放到/opt/kafka目录下,创建后的全路径如下所示:
/opt/kafka
/opt/kafka/kafkalogs
2、解压缩安装包
tar -zxvf kafka_2.11-2.1.1.tgz
3、修改配置文件
首先打开配置文件位置
cd /opt/kafka/kafka_2.11-2.1.1/config/
这里主要关注server.properties文件,这里可以通过zookeeper.properties配置Kafka内带的zk集群来启动,但是建议使用独立的zk集群
下面这个是hadoop-slave上的完整配置:
[root@hadoop-slave1 config]# cat server.properties
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0
############################# Socket Server Settings #############################
# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
# FORMAT:
# listeners = listener_name://host_name:port
# EXAMPLE:
# listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://:9092
# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured. Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092
# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3
# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600
############################# Log Basics #############################
# A comma separated list of directories under which to store log files
log.dirs=/opt/kafka/kafkalogs/
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1
############################# Internal Topic Settings #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion due to age
# 默认消息的最大持久化时间,168小时,7天
log.retention.hours=168
# 消息保存的最大值5M
message.max.byte=5242880
# kafka保存消息的副本数,如果一个副本失效了,另一个还可以继续提供服务
default.replication.factor=2
# 取消息的最大直接数
replica.fetch.max.bytes=5242880
# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000
#log.cleaner.enable=false #是否启用log压缩,一般不启用,启用的话可以提高性能
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=hadoop-slave1:12181,hadoop-slave2:12181,hadoop-slave3:12181
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000
############################# Group Coordinator Settings #############################
# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
hadoop-slave2和hadoop-slave3配置基本和上边一致,就是标红的地方需要做修改成相应的值
4、启动
进入3台机器的bin目录
cd /opt/kafka/kafka_2.11-2.1.1/bin
每一台机器都执行启动命令
./kafka-server-start.sh -daemon ../config/server.properties
每一台机器都检查是否已启动
5、查看集群是否安装成功
客户端连接zookeeper
/opt/zookeeper/zookeeper-3.4.12/bin/zkCli.sh -server hadoop-slave1:12181
检查kafka集群启动个数
ls /brokers/ids
测试Kafka
1、创建测试mytopic
/opt/kafka/kafka_2.11-2.1.1/bin/kafka-topics.sh --create --zookeeper hadoop-slave1:12181,hadoop-slave2:12181,hadoop-slave3:12181 --replication-factor 3 --partitions 3 --topic mytopic
选项说明:
–topic 定义topic名
–replication-factor 定义副本数
–partitions 定义分区数
2、查看mytopic副本信息
/opt/kafka/kafka_2.11-2.1.1/bin/kafka-topics.sh --describe --zookeeper hadoop-slave1:12181,hadoop-slave2:12181,hadoop-slave3:12181 --topic mytopic
3、查看已创建topic列表信息
/opt/kafka/kafka_2.11-2.1.1/bin/kafka-topics.sh --list --zookeeper hadoop-slave1:12181,hadoop-slave2:12181,hadoop-slave3:12181
4、创建Producer
/opt/kafka/kafka_2.11-2.1.1/bin/kafka-console-producer.sh --broker-list hadoop-slave1:9092,hadoop-slave2:9092,hadoop-slave3:9092 --topic mytopic
基于mytopic并发送消息"hello kafka 20201228"
5、创建Consumer
注意:--bootstrap-server
后面跟的是borker的地址
/opt/kafka/kafka_2.11-2.1.1/bin/kafka-console-consumer.sh --bootstrap-server hadoop-slave1:9092,hadoop-slave2:9092,hadoop-slave3:9092 --from-beginning --topic mytopic
–from-beginning:会把TestTopic主题中以往所有的数据都读取出来。根据业务场景选择是否增加该配置。
注意:消费者的命令跟版本有关系,本文使用的新版本命令基于kafka_2.11-2.1.1
下面是旧版本的启动命令,注意后面跟的是zookeeper集群的地址
./bin/kafka-console-consumer.sh --zookeeper hadoop-slave1:12181,hadoop-slave2:12181,hadoop-slave3:12181 --from-beginning --topic mytopic
6、删除mytopic
7、停止kafka
/opt/kafka/kafka_2.11-2.1.1/bin/kafka-server-stop.sh