【推荐原因】无意中逛到这个博主的博客,看到了他的这篇心得,觉得是有过数据处理、统计分析、SAS编程丰富经验的专业人士学习SAS的一些真实感想,值得分享。其实,还有一大帮哥们是做SAS开发的,他们的工作可能更偏向于底层的程序开发。其实,自己用了这么久的SAS,很想说的是,统计软件都是用来解决统计分析问题的,真正需要的是扎实的数理统计学背景和业务分析能力。而不同的统计软件就类似高级厨师的不同刀具根据不同的菜谱要求去提取不同部位的肉,怎么习惯怎么好。COS统计之都有篇帖子几个牛人在论证SAS和R的优劣,值得一看。我倒觉得,工具乃为人所用,有工具本身的优劣,也有使用者的日久生情,李寻欢用的就是一把破破的雕刻刀,仁者见仁,智者见智,不必强求。 创造价值、 传播知识、 繁衍生命,做点有意义的事情。
想说一说自己在学习和使用SAS时的所得所失。我可能走了许多弯路,尤其是比起那些具备更多的信息的,更加年轻的人。我的经验或许比你的要多,也可能更加微不足道。但是分享的本身,即使是微末的一点点,也是乐趣。不是吗?
一直到现在,我还觉得自己做SAS还是挺辛苦的,差不多从来就没有很多人那样的举重就轻。如果我说自己学了三年的SAS还不成的话,有人会纳闷。纳闷SAS不就是几个月的速成软件吗?对一些人来说,这无疑是正确的。可是如果承认自己的智商并非天赋异秉而高人一等的话,就得潜下心来,不要妄自菲薄。我自己学了五年SAS,还经常犯错。我的同事做的更好,可是也犯错误。
我所学专业是统计,入门的软件是R,在工作里差不多只和SAS打交道。用SAS处理数据分析数据。不多的时候用R运行一下别人的程序,或者是SAS里没有成形的较新的方法。一年也设计一二或三个DATABASE(用ACCESS)。我的工作内容差不多可以普遍到整个做统计分析行业:大致如此。最重要的当然是数据分析,或者说分析数据就是自己的日常工作内容。几乎无时不刻的用SAS。
因为入门晚,大概有五年的时间,开始用的差不多就是SAS V9的版本。所以每当看到有些SAS使用者在用proc plot一类的过程,看到那些星星点点的黑白的制图,除了肃然起敬之外,也明白了为什么很多人会讨厌SAS的图形功能。从现在SAS的图形功能及其和ODS输出的良好结合性来看,sas的制图是很美观的。而这种对SAS旧版本的较为薄弱的制图形功能的轻视,几乎成了许多人的共识:不要用sas画图。我很幸运,过度了大概两年时间的gplot,到了现在的sg-plot。我的工作任务之一是给“科学研究”(我总这在想这种提法科学吗?)提供数据分析报告,从发表杂志文章的角度来看,sas图例无论是从清晰度还是审美的角度来看,都是杂志图例的首选之一。不象有的人抱怨excel成图的DPI太低。其实有时候R也存在这个问题。
SAS涵盖比较广泛。其特定的功用可以延伸到许多不同的行业。而量身定制的衍生产品也有泛滥的趋势。不过,SAS/STAT应该仍然是它的核心。相比其实不太有历史感的9.0版本,SAS在STAT上的拓展也可以说是日新月异。比如说在MCMC上,在非参数估计上,在随机线性模型的补充改善上都是这几年的事情。且不提更新的分位回归,结构方程分析(PROC CALIS),以及混合模型等等。原来觉得很难做的东西,现在都成为了常规。几年以前的统计博士或许不懂生存分析。现在差不多本科生都知道怎么绘制生存曲线。如同统计在运算方面的突飞猛进,SAS也与时俱进。所以引以为自豪的太老的SAS经验,如果没有变成进步的阻碍的话,也成了自吹自擂的慰籍。
我在学了两年的SAS之后,觉得SAS其实也没有什么。其实都是自菲薄。SAS作为一个软件,承载的是更加厚重的统计学的发展。我曾经和同事谈论过PROC GLM。我认为GLM基本上取代了REG过程。可是现在,我不得不把许多线性分析的问题从GLM挪到REG里去做,因为REG在许多方面更加有效和全面。比如说模型选择和诊断。类似的如同GENMOD和LOGISTIC的关系。GENMOD也许可以做的更多,但是无疑LOGISTIC在logit模型上做的更深更精确。
和许多的软件一样,SAS是个大杂烩,可以提供许多菜单以供顾客选择。考虑到这一点,杂这个概念非常重要。杂用,其实是取其精华,不囿于某个步骤和过程。我看到一些人试图用数据步或者SQL去解决统计的问题。南辕北辙。事倍功半。因为SAS已经提供更加缜密的统计过程来计算统计量解决统计问题。如果我说你在SQL费力半天求的中位数其实是错误,可能你生气。可是是事实。还有一个例子是关于使用PROCNLMIXED的问题。这是一个用最大似然法解决非线性模型的统计过程。其实,且不提MAXIMUMLIKELIHOOD在许多问题上并非是最有效的最优化的,盲目的写了很长的公式,而人为忽略其他的过程或许已经提供更优化的解法,并非是表现好的数学功底的唯一方法。
作为一个做数据分析的,我切实的建议是,不要忽略数据步的作用。做sas开始的很长一段时间里,你或许都无法避免程序疏漏的困扰。这些错误很大的一部分来自对DATA STEP没有深刻的理解。我有时候惊讶自己为什么总犯些很低级的错误。其实这些错误是有根源的。好的数据分析的基础是真确的数据。如果失去了这个基础,其它的似乎变得没有意义。包括我自己,时常的尴尬是为什么同样的数据,分析结果却无法复制。原因差不多总是源于对SAS理解的不深不全。
我不希望自己把SAS理解为专于程序编制的软件。其实其最终的目的应该是进行统计分析,产生分析总结的报告。所以编程只是手段而已。data step再难,多做几遍,多记忆就会掌握,但是繁复变化的统计理论和运算,需要不断的理解和改进。所以一个统计分析报告或许也几易其稿,不断改善。
和我一样,你或许也感受到SAS的易和不易。不过,通过学习和使用SAS而获得对知识的兴趣,可能使得我们对自己的看似无聊的工作减少了许多抱怨。共勉。