1、数据库系统和数据库管理系统
DBMS:数据库管理系统,是位于用户与操作系统之间的一层数据管理软件,用于科学地组织、存储和管理数据、高效地获取和维护数据。
DBS:数据库系统,指在计算机系统中引入数据库后的系统,一般由数据库、数据库管理系统、应用系统、数据库管理员
2、数据库的三级系统结构
外模式(子模式或用户模式):是数据库用户的数据视图,是与某一应用有关的数据逻辑表示,应用程序(一个数据库可有多个外模式)
模式(逻辑模式):是数据库中全部用户的数据逻辑结构和特征的描述,是所以用户的公共数据视图(中间层)(一个数据库只有一个外模式)
内模式(存储模式):是数据物理结构和存储方式的描述。(一个数据库只有一个外模式)
A.数据库三级模式反映的是数据的三个抽象层次: 内模式又称为存储模式,是对数据库物理结构和存储方式的描述。模式是对数据库中全体数据的逻辑结构和特征的描述。外模式又称为子模式或用户模式,是对特定数据库用户相关的局部数据的逻辑结构和特征的描述。
B.数据库的三级系统结构:外模式、模式和内模式。
C.数据库内模式:又称为存储模式,是对数据库物理结构和存储方式的描述,是数据在数据库内部的表示方式。一个数据库只有一个内模式。
D,数据库模式:是对数据库中全体数据的逻辑结构(数据项的名字、类型、取值范围等)和特征(数据之间的联系以及数据有关的安全性、完整性要求)的描述。
E.数据库外模式:又称为子模式或用户模式,数据库用户的数据视图,它是数据库用户能够看见和使用的局部数据的逻辑结构和特征的描述,是数据库用户的数据视图。通常是模式的子集。一个数据库可有多个外模式。
3、数据库的二级映像
数据库的二级映像:外模式/模式映像、模式/内模式映像。
外模式——模式映射:
定义和建立某个外模式与概念模式间的对应关系,将外模式与模式联系起来,当模式发生改变时,只要改变其映射,就可以使外模式保持不变,对应的应用程序也可保持不变。(当模式发生改变时,通过改变映像,是外模式保不变)数据的逻辑独立性
模式——内模式映射:
定义建立数据的逻辑结构(概念模式)与存储结构(内模式)间的对应关系,当数据的存储结构发生变化时,只需改变概念模式——内模式映射,就能保持概念模式不变,因此应用程序也可以保持不变。(当内模式发生改变时,通过改变映像,是模式保持不变)数据的物理独立性
优点:
通过外模式-模式映射和模式-内模式映射这两个映射保证了数据库系统中的数据具有较高的逻辑独立性和物理独立性。
4、范式
范式:指符合某一种级别的关系模式的集合。在设计关系数据库时,根据满足依赖关系要求的不同定义为不同的范式。
1NF:若关系模式的所有属性都是不可分的基本数据项,则该关系模式属于1NF。
2NF:1NF关系模式如果同时满足每一个非主属性完全函数依赖于码,则该关系模式属于2NF。
3NF:若关系模式的每一个非主属性既不部分依赖于码也不传递依赖于码,则该关系模式属于3NF。
BCNF:若一个关系模式的每一个决定因素都包含码,则该关系模式属于BCNF。
4nf:消除数据依赖
5nf:消除传递依赖
5、数据库设计
数据库设计的6个基本步骤:需求分析,概念结构设计,逻辑结构设计,物理结构设计,数据库实施,数据库运行和维护。
A.概念结构设计:指将需求分析得到的用户需求抽象为信息结构即概念模型(基本E-R图)的过程。也就是通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型。
B.逻辑结构设计:将概念结构模型(基本E-R图)转换为某个DBMS产品所支持的数据模型相符合的逻辑结构,将E-R模型转换为关系模型,并对其进行优化。设计系统的模式和外模式,对于关系模型主要是基本表和视图;
C.物理结构设计:指为一个给定的逻辑数据模型选取一个最适合应用环境的物理结构的过程。包括设计数据库的存储结构与存取方法。设计数据的存储结构和存取方法,如索引的设计。
6、MyISAM与InnoDB区别
7、索引的数据结构
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
使用B树的好处
B树可以在内部节点同时存储键和值,因此,把频繁访问的数据放在靠近根节点的地方将会大大提高热点数据的查询效率。这种特性使得B树在特定数据重复多次查询的场景中更加高效。
使用B+树的好处
由于B+树的内部节点只存放键,不存放值,因此,一次读取,可以在内存页中获取更多的键,有利于更快地缩小查找范围。 B+树的叶节点由一条链相连,因此,当需要进行一次全数据遍历的时候,B+树只需要使用O(logN)时间找到最小的一个节点,然后通过链进行O(N)的顺序遍历即可。而B树则需要对树的每一层进行遍历,这会需要更多的内存置换次数,因此也就需要花费更多的时间。B+树的查询效率更加稳定。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,解决元素遍历的效率低下的问题。增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。
Hash索引
hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询。因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询。
不利点:
- hash索引不支持使用索引进行排序
- hash索引不支持模糊查询以及多列索引的最左前缀匹配。原理也是因为hash函数的不可预测。AAAA和AAAAB的索引没有相关性
- hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询。
- hash索引虽然在等值查询上较快,但是不稳定。性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差。而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低。
8、索引的基本原理
索引用来快速地寻找那些具有特定值的记录。如果没有索引,一般来说执行查询时遍历整张表。
索引的原理很简单,就是把无序的数据变成有序的查询
- 把创建了索引的列的内容进行排序
- 对排序结果生成倒排表
- 在倒排表内容上拼上数据地址链
- 在查询的时候,先拿到倒排表内容,再取出数据地址链,从而拿到具体数据
9、索引设计的原则?
- 适合索引的列是出现在where子句中的列,或者连接子句中指定的列
- 基数较小的类,索引效果较差,没有必要在此列建立索引
- 使用短索引,如果对长字符串列进行索引,应该指定一个前缀长度,这样能够节省大量索引空间
- 不要过度索引。索引需要额外的磁盘空间,并降低写操作的性能。在修改表内容的时候,索引会进行更新甚至重构,索引列越多,这个时间就会越长。所以只保持需要的索引有利于查询即可。
10、创建索引的原则(重中之重)
1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2)较频繁作为查询条件的字段才去创建索引
3)更新频繁字段不适合创建索引
4)若是不能有效区分数据的列不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低)
5)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
6)定义有外键的数据列一定要建立索引。
7)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。
8)对于定义为text、image和bit的数据类型的列不要建立索引。
10、百万级别或以上的数据如何删除
关于索引:由于索引需要额外的维护成本,因为索引文件是单独存在的文件,所以当我们对数据的增加,修改,删除,都会产生额外的对索引文件的操作,这些操作需要消耗额外的IO,会降低增/改/删的执行效率。所以,在我们删除数据库百万级别数据的时候,查询MySQL官方手册得知删除数据的速度和创建的索引数量是成正比的。
- 所以我们想要删除百万数据的时候可以先删除索引(此时大概耗时三分多钟)
- 然后删除其中无用数据(此过程需要不到两分钟)
- 删除完成后重新创建索引(此时数据较少了)创建索引也非常快,约十分钟左右。
- 与之前的直接删除绝对是要快速很多,更别说万一删除中断,一切删除会回滚。那更是坑了。
11、索引的类型
唯一索引、主键索引、普通索引、全文索引、联合索引
主键索引: 数据列不允许重复,不允许为NULL,一个表只能有一个主键。
唯一索引: 数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。
普通索引: 基本的索引类型,没有唯一性的限制,允许为NULL值。
全文索引: 是目前搜索引擎使用的一种关键技术。
联合索引:MySQL可以使用多个字段同时建立一个索引,叫做联合索引。
12、什么是聚簇索引?何时使用聚簇索引与非聚簇索引
- 聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据。当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询。
- 非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因。非索引结点不一定会回表查询。这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询。
innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值
13、什么是数据库事务?
事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位。事务是逻辑上的一组操作,要么都执行,要么都不执行。
14、事物的四大特性(ACID)
原子性: atomicity,事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
一致性: consistency,执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
隔离性: isolation,并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
持久性: durability,一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
15、什么是脏读?幻读?不可重复读?
脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
幻读(Phantom Read):在一个事务的两次查询中数据数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。
16、隔离级别与锁的关系
READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。在Read Uncommitted级别下,读取数据不需要加共享锁,这样就不会跟被修改的数据上的排他锁冲突
READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。在Read Committed级别下,读操作需要加共享锁,但是在语句执行完以后释放共享锁;
REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。在Repeatable Read级别下,读操作需要加共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁。
SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。SERIALIZABLE 是限制性最强的隔离级别,因为该级别锁定整个范围的键,并一直持有锁,直到事务完成。
17、按照锁的粒度分数据库锁有哪些?锁机制与InnoDB锁算法
在关系型数据库中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。
行级锁 行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁和排他锁。(从锁的类别上来讲分为共享锁和排它锁,共享锁: 又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。排他锁: 又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。)特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
InnoDB是基于索引来完成行锁
例: select * from tab_with_index where id = 1 for update;
for update 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么InnoDB将完成表锁,并发将无从谈起
表级锁 表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。
特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁 页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。
特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
18、数据库的乐观锁和悲观锁是什么?怎么实现的?
悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制。以一般多写的场景下用悲观锁就比较合适。
乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。实现方式:乐一般会使用版本号机制或CAS算法实现。乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
19、什么是死锁?怎么解决?
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
常见的解决死锁的方法
1、如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。
2、在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
3、对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;
如果业务处理不好可以用分布式事务锁或者使用乐观锁
20、什么是视图?为什么要使用视图?
视图使开发者只关心感兴趣的某些特定数据和所负责的特定任务,只能看到视图中所定义的数据,而不是视图所引用表中的数据,从而提高了数据库中数据的安全性。
为了提高复杂SQL语句的复用性和表操作的安全性,MySQL数据库管理系统提供了视图特性。所谓视图,本质上是一种虚拟表,在物理上是不存在的,其内容与真实的表相似,包含一系列带有名称的列和行数据。但是,视图并不在数据库中以储存的数据值形式存在。行和列数据来自定义视图的查询所引用基本表,并且在具体引用视图时动态生成。
视图的特点如下:
- 视图的列可以来自不同的表,是表的抽象和在逻辑意义上建立的新关系。
- 视图是由基本表(实表)产生的表(虚表)
- 视图的建立和删除不影响基本表。
- 对视图内容的更新(添加,删除和修改)直接影响基本表。
- 当视图来自多个基本表时,不允许添加和删除数据。
21、视图的使用场景有哪些?
- 重用SQL语句;
- 简化复杂的SQL操作。在编写查询后,可以方便的重用它而不必知道它的基本查询细节;
- 用表的组成部分而不是整个表;
- 保护数据。可以给用户授予表的特定部分的访问权限而不是整个表的访问权限;
- 更改数据格式和表示。视图可返回与底层表的表示和格式不同的数据。
视图的优点 - 查询简单化。视图能简化用户的操作
- 数据安全性。视图使用户能以多种角度看待同一数据,能够对机密数据提供安全保护
- 逻辑数据独立性。视图对重构数据库提供了一定程度的逻辑独立性
视图的缺点 - 性能。数据库必须把视图的查询转化成对基本表的查询,如果这个视图是由一个复杂的多表查询所定义,那么,即使是视图的一个简单查询,数据库把它变成一个复杂的结合体,需要花费一定的时间。
- 修改限制。当用户试图修改视图的某些行时,数据库必须把它转化为对基本表的某些行的修改。事实上,当从视图中插入或者删除时,情况也是这样。对于简单视图来说,这是很方便的,但是,对于比较复杂的视图,可能是不可修改的
22、什么是游标?
游标是系统为用户开设的一个数据缓冲区,存放SQL语句的执行结果,每个游标区都有一个名字。用户可以通过游标逐一获取记录并赋给主变量,交由主语言进一步处理。
23、什么是触发器?
触发器是指一段代码,当触发某个事件时,自动执行这些代码。
24、SQL语句主要分为哪几类
数据定义语言DDL(Data Ddefinition Language)CREATE,DROP,ALTER
数据查询语言DQL(Data Query Language)SELECT
数据操纵语言DML(Data Manipulation Language)INSERT,UPDATE,DELETE
25、六种关联查询
交叉连接(CROSS JOIN)
内连接(INNER JOIN)
外连接(LEFT JOIN/RIGHT JOIN)
联合查询(UNION与UNION ALL)
全连接(FULL JOIN)
交叉连接(CROSS JOIN)
26、如何定位及优化SQL语句的性能问题?创建的索引有没有被使用到?或者说怎么才可以知道这条语句运行很慢的原因?
MySQL提供了explain命令来查看语句的执行计划。
id字段:查询顺序
- id 相同,执行顺序由上而下
- id 不同,如果是子查询,id 的序号会递增, id 值越大优先级越高, 越先被执行
id 相同不同,同时存在
type字段:类型以及结果值从最好到最坏
类型以及结果值从最好到最坏依次是:system > const > eq_ref (前面几个都是唯一索引)> ref > range(最低要求) > index > ALL,一般来说得保证查询至少达到 range 级别, 最好能达到 ref - consts 单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。
- ref:非唯一性索引扫描, 返回匹配某个单独值的所有行,本质上也是一种索引访问,它返回所有匹配某个单独的行,然而,它可能会找到多个符合个条件的行,所以它应该属于查找和扫描的混合体
- range:只检索给定范围内的行,使用一个索引来选择行。key 列显示使用了哪个索引。一般就是你在 where 语句中出现了 between、<、>、in 等的查询。这种范围扫描索引比全表扫描要好,因为它只需要开始于索引的某个点,而结束于另一个点,不用全表扫描
- index: index 与 ALL的却别 ,index 类型只遍历索引树, 这通常比 ALL 快, 因为索引文件通常比数据文件小
- possible_keys 可能使用的索引,注意不一定会使用。
- key字段:实际使用的索引
- key_length 索引长度
- ref 表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
- rows 返回估算的结果集数目,并不是一个准确的值。一般来说,少一点查询速度快
- extra 的信息非常丰富,常见的有:
Using index 使用覆盖索引
Using where 使用了用where子句来过滤结果集
Using filesort 使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。
Using temporary 使用了临时表保存中间结果
27、大表数据查询,怎么优化
- 优化sql语句+索引;
- 第二加缓存,memcached, redis;
- 主从复制,读写分离,主库负责写,从库负责读;
- 垂直拆分,根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;
- 水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key, 为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。
28、超大分页怎么处理?
解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可。
29、MySQL数据库cpu飙升到500%的话他怎么处理?
当 cpu 飙升到 500%时,先用操作系统命令 top 命令观察是不是 mysqld 占用导致的,如果不是,找出占用高的进程,并进行相关处理。
如果是 mysqld 造成的, show processlist,看看里面跑的 session 情况,是不是有消耗资源的 sql 在运行。找出消耗高的 sql,看看执行计划是否准确, index 是否缺失,或者实在是数据量太大造成。
一般来说,肯定要 kill 掉这些线程(同时观察 cpu 使用率是否下降),等进行相应的调整(比如说加索引、改 sql、改内存参数)之后,再重新跑这些 SQL。
也有可能是每个 sql 消耗资源并不多,但是突然之间,有大量的 session 连进来导致 cpu 飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,比如说限制连接数等
30、大数据的4V特性概念
“容量大Volume”
“多样性Variety”
“价值高Value”
“速度快Velocity”。