在文章TaskScheduler 任务提交与调度源码解析 中介绍了Task在executor上的逻辑分配,调用TaskSchedulerImpl的resourceOffers()方法,得到了TaskDescription序列的序列Seq[Seq[TaskDescription]],即对某个task需要在某个executor上执行的描述,仅仅是逻辑上的,还并未真正到executor上执行,本文将从源码角度解析Task是怎么被分配到executor上执行的。
通过resourceOffers逻辑分配完task后,CoarseGrainedSchedulerBackend以Seq[Seq[TaskDescription]]参数调用了launchTasks方法:
private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
// 序列化TaskDescription
val serializedTask = ser.serialize(task)
if (serializedTask.limit >= maxRpcMessageSize) {
scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.rpc.message.maxSize (%d bytes). Consider increasing " +
"spark.rpc.message.maxSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, maxRpcMessageSize)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
// 根据executorId获取executor描述信息executorData
val executorData = executorDataMap(task.executorId)
// 减少相应的freeCores
executorData.freeCores -= scheduler.CPUS_PER_TASK
logInfo(s"Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
s"${executorData.executorHost}.")
// 利用executorData中的executorEndpoint,发送LaunchTask事件,LaunchTask事件中包含序列化后的task
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}
先将TaskDescription序列化后判断其大小是否超过akka规定的上限,若没有则通过executorData的executorEndpoint来发送LaunchTask事件,executorEndpoint是Diver端和executor端通信的引用,发送LaunchTask事件给executor,将Task传递给executor执行。
driver端向executor发送任务需要通过后台辅助进程CoarseGrainedSchedulerBackend,那么自然而然executor接收任务也有对应的后台辅助进程CoarseGrainedExecutorBackend,该进程与executor一一对应,提供了executor和driver通讯的功能。下面看看CoarseGrainedExecutorBackend接收到事件后是如何处理的:
case LaunchTask(data) =>
if (executor == null) {
exitExecutor(1, "Received LaunchTask command but executor was null")
} else {
// 将TaskDescription反序列化
val taskDesc = ser.deserialize[TaskDescription](data.value)
logInfo("Got assigned task " + taskDesc.taskId)
// 调用executor的launchTask来加载该task
executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
taskDesc.name, taskDesc.serializedTask)
}
将task反序列化后得到TaskDescription ,调用executor的launchTask来加载该task,继续跟进:
def launchTask(
context: ExecutorBackend,
taskId: Long,
attemptNumber: Int,
taskName: String,
serializedTask: ByteBuffer): Unit = {
// 创建一个TaskRunner
val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
serializedTask)
runningTasks.put(taskId, tr)
// 将tr放到线程池中执行
threadPool.execute(tr)
}
创建了一个TaskRunner(继承于 Runnable)并加入到线程池中执行,重点就是TaskRunner中的run方法了,代码太长保留只要逻辑代码:
override def run(): Unit = {
...
try {
// 反序列化task,得到taskFiles、jar包taskFiles和Task二进制数据taskBytes
val (taskFiles, taskJars, taskProps, taskBytes) =
Task.deserializeWithDependencies(serializedTask)
Executor.taskDeserializationProps.set(taskProps)
// 下载task依赖的文件和jar包
updateDependencies(taskFiles, taskJars)
// 反序列化出task
task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
...
val value = try {
// 调用task的run方法,真正执行task
val res = task.run(
taskAttemptId = taskId,
attemptNumber = attemptNumber,
metricsSystem = env.metricsSystem)
threwException = false
// 返回结果
res
} finally {
val releasedLocks = env.blockManager.releaseAllLocksForTask(taskId)
// 通过任务内存管理器清理所有的分配的内存
val freedMemory = taskMemoryManager.cleanUpAllAllocatedMemory()
if (freedMemory > 0 && !threwException) {
val errMsg = s"Managed memory leak detected; size = $freedMemory bytes, TID = $taskId"
if (conf.getBoolean("spark.unsafe.exceptionOnMemoryLeak", false)) {
throw new SparkException(errMsg)
} else {
logWarning(errMsg)
}
}
...
val resultSer = env.serializer.newInstance()
val beforeSerialization = System.currentTimeMillis()
// 序列化task结果value
val valueBytes = resultSer.serialize(value)
val afterSerialization = System.currentTimeMillis()
...
// 将序列化后的结果包装成DirectTaskResult对象
val directResult = new DirectTaskResult(valueBytes, accumUpdates)
// 再将directResult 序列化,
val serializedDirectResult = ser.serialize(directResult)
val resultSize = serializedDirectResult.limit
// directSend = sending directly back to the driver
val serializedResult: ByteBuffer = {
// 若task结果大于所有maxResultSize(可配置,默认1G),则直接丢弃,driver在返回的对象中拿不到对应的结果
if (maxResultSize > 0 && resultSize > maxResultSize) {
ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
// 若task结果大小超过akka最大能传输的大小(运行结果无法通过消息传递 ),则将结果写入BlockManager
} else if (resultSize > maxDirectResultSize) {
val blockId = TaskResultBlockId(taskId)
env.blockManager.putBytes(
blockId,
new ChunkedByteBuffer(serializedDirectResult.duplicate()),
StorageLevel.MEMORY_AND_DISK_SER)
logInfo(
s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
// 结果比较小能以消息传递,直接返回
} else {
logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
serializedDirectResult
}
}
// 向Driver端发状态更新
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
} catch {
...
// 向Driver端发状态更新
execBackend.statusUpdate(taskId, TaskState.FAILED, serializedTaskEndReason)
...
} finally {
// 不管成功与否,都需要将task从runningTasks中移除
runningTasks.remove(taskId)
}
}
通过Task的deserializeWithDependencies反序列化得到taskFiles、jar包taskFiles和Task二进制数据taskBytes
下载task依赖的文件和jar包
反序列化出task
调用task的run方法,真正执行task,并返回结果
清除分配内存
序列化task的结果,包装成directResult,再次序列化,根据其结果大小将结果以不同的方式返回给driver
- 若task结果大于所有maxResultSize(可配置,默认1G),则直接丢弃,driver在返回的对象中拿不到对应的结果
- 若task结果大小超过akka最大能传输的大小(运行结果无法通过消息传递 ),则将结果写入BlockManager
- 结果比较小能以消息传递,直接返回 最后通过CoarseGrainedExecutorBackend的statusUpdate方法来返回结果给driver,该方法会使用driverRpcEndpointRef 发送一条包含 serializedResult 的 StatusUpdate 消息给 driver。
我们再来看看task的run方法都干了什么?
final def run(
taskAttemptId: Long,
attemptNumber: Int,
metricsSystem: MetricsSystem): T = {
SparkEnv.get.blockManager.registerTask(taskAttemptId)
// 创建一个task运行的上下文实例
context = new TaskContextImpl(
stageId,
partitionId,
taskAttemptId,
attemptNumber,
taskMemoryManager,
localProperties,
metricsSystem,
metrics)
TaskContext.setTaskContext(context)
taskThread = Thread.currentThread()
if (_killed) {
kill(interruptThread = false)
}
try {
runTask(context)
} catch {
...
} finally {
... // 标记完成,释放内存
}
}
再继续看runTask方法,task有两种实现,分别是ResultTask(ResultStage的task,个数为最后FinalRdd的partition个数)、ShuffleMapTask(ShuffleMapStage的task,个数为最后FinalRdd的partition个数),两者对应的runTask也有不同的实现,先看ResultTask:
override def runTask(context: TaskContext): U = {
val deserializeStartTime = System.currentTimeMillis()
val ser = SparkEnv.get.closureSerializer.newInstance()
// 反序列化
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
// 对rdd的指定分区的迭代器执行func函数,并返回结果
func(context, rdd.iterator(partition, context))
}
- 使用广播变量反序列化得到rdd和func,数据来源于taskBinary
- 对rdd的指定分区的迭代器执行func函数,并返回结果
这里的func函数根据具体操作而不同,遍历分区的每条记录是通过迭代器iterator来获取的。
再来看ShuffleMapTask的实现,shuffleMapTask的输出直接通过Shuffle write写磁盘,为下游的stage的Shuffle Read准备数据,:
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val deserializeStartTime = System.currentTimeMillis()
val ser = SparkEnv.get.closureSerializer.newInstance()
// 使用广播变量反序列化出rdd和ShuffleDependency
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime
var writer: ShuffleWriter[Any, Any] = null
try {
// 获取shuffleManager
val manager = SparkEnv.get.shuffleManager
// 通过shuffleManager的getWriter()方法,获得shuffle的writer
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
// 通过rdd指定分区的迭代器iterator方法来遍历每一条数据,再之上再调用writer的write方法以写数据
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
writer.stop(success = true).get
} catch {
case e: Exception =>
try {
if (writer != null) {
writer.stop(success = false)
}
} catch {
case e: Exception =>
log.debug("Could not stop writer", e)
}
throw e
}
}
- 通过广播变量反序列化出rdd和ShuffleDependency,数据来源于taskBinary
- 获取ShuffleManager的writer对象的write方法来将一个rdd的某个分区写入到磁盘
- 通过rdd的iterator方法能遍历对应分区的所有数据
Driver端接收到结果后的处理在后续文章中再解析……