在数据流转中或者日常的数据操作中,势必会有数据写入的过程,如果把一些数据写入一张数据库表中,如果写入量有100万,而重复的数据有90万,那么如何让这10%的数据能够更高更高效的写入。

在MySQL方向提供了Insert ignore into,insert into on duplicate,replace into这几种写入的方式,看起来好像都差不多,但是实际上在一些场景下的差异还比较大,如果使用不当,恰恰是性能的瓶颈。

整体上我分为两个大的部分,会分别测试这三种数据写入场景。

第一部分基于id,name的数据列,其中id为主键,自增

第二部分基于id,xid,name的数据列,其中id为主键,自增,xid为唯一性索引

至于为什么要这么分,我们可以先看结果再做讨论。

1基于id,name的数据列,其中id为主键,自增

  为了三种测试场景的基准对等,数据初始化会按照如下的三种方式来进行。

数据初始化

create table test_data(id int primary key auto_increment,name varchar(30)) engine=innodb;
insert into test_data values(1,'aa'),(2,'bb'),(3,'cc');
show create table test_data\G
        Table: test_data
 Create Table: CREATE TABLE `test_data` (
   `id` int(11) NOT NULL AUTO_INCREMENT,
   `name` varchar(30) DEFAULT NULL,
   PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8

insert ignore

insert ignore into test_data values(1,'aa');
 Query OK, 0 rows affected, 1 warning (0.00 sec)
 >>show warnings;
 +---------+------+---------------------------------------+
 | Level   | Code | Message                               |
 +---------+------+---------------------------------------+
 | Warning | 1062 | Duplicate entry '1' for key 'PRIMARY' |
 +---------+------+---------------------------------------+
 1 row in set (0.00 sec)
show create table test_data\G
        Table: test_data
 Create Table: CREATE TABLE `test_data` (
   `id` int(11) NOT NULL AUTO_INCREMENT,
   `name` varchar(30) DEFAULT NULL,
   PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8
insert ignore into test_data values(1,'aaa');
 Query OK, 0 rows affected, 1 warning (0.01 sec)
 >>show warnings;
 +---------+------+---------------------------------------+
 | Level   | Code | Message                               |
 +---------+------+---------------------------------------+
 | Warning | 1062 | Duplicate entry '1' for key 'PRIMARY' |
 +---------+------+---------------------------------------+
 1 row in set (0.00 sec)
insert ignore into test_data values(4,'cc');
 Query OK, 1 row affected (0.01 sec)
select * from test_data;
 +----+------+
 | id | name |
 +----+------+
 |  1 | aa   |
 |  2 | bb   |
 |  3 | cc   |
 |  4 | cc   |
 +----+------+
 4 rows in set (0.00 sec)

replace into场景

>>replace into test_data values(1,'aa');
 Query OK, 1 row affected (0.01 sec)
show create table test_data\G
        Table: test_data
 Create Table: CREATE TABLE `test_data` (
   `id` int(11) NOT NULL AUTO_INCREMENT,
   `name` varchar(30) DEFAULT NULL,
   PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8
replace into test_data values(1,'aaa');
 Query OK, 2 rows affected (0.00 sec)
replace into test_data values(4,'cc');
 Query OK, 1 row affected (0.00 sec)
select *from test_data;
 +----+------+
 | id | name |
 +----+------+
 |  1 | aaa  |
 |  2 | bb   |
 |  3 | cc   |
 |  4 | cc   |
 +----+------+
 4 rows in set (0.00 sec)

insert into on duplicate场景

insert into test_data values(1,'aa') on duplicate key update id=id;
 Query OK, 0 rows affected (0.00 sec)
 insert into test_data values(1,'aa') on duplicate key update id=id, name=name;
 Query OK, 0 rows affected (0.00 sec)
show create table test_data\G
        Table: test_data
 Create Table: CREATE TABLE `test_data` (
   `id` int(11) NOT NULL AUTO_INCREMENT,
   `name` varchar(30) DEFAULT NULL,
   PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8
insert into test_data values(1,'aaa') on duplicate key update id=id;
 Query OK, 0 rows affected (0.00 sec)
 insert into test_data values(1,'aaa') on duplicate key update id=id,name=name;
 Query OK, 0 rows affected (0.00 sec)
insert into test_data values(4,'cc') on duplicate key update id=id;
 Query OK, 1 row affected (0.01 sec)
 insert into test_data values(4,'ccc') on duplicate key update id=id, name=name;
 Query OK, 0 rows affected (0.00 sec)
select * from test_data;
 +----+------+
 | id | name |
 +----+------+
 |  1 | aa   |
 |  2 | bb   |
 |  3 | cc   |
 |  4 | cc   |
 +----+------+
 4 rows in set (0.00 sec)

小结:这三种场景的结果从自增列的处理方式来看是完全对等的,但是对于重复数据的处理方式还是存在差异。 

相比而言,replace into和insert into on duplicate存在本质的区别,replace into是覆盖写,即删除原来的,写入新的。不光是主键列,其他列也会保持一致

insert into on duplicate则可以根据自己的需求来定制重复数据的处理策略,不会主动改变数据。

insert ignore into 在这种场景下最为通用,而且对于数据的侵入性最小。

所以如果要保证源端的数据基于主键完全一致,不管非主键列的数据是否一致,都需要完全覆盖,选择replace into是一种好的方法。

否则采用insert into on duplcate或者insert ignore into
 

2

基于id,xid,name的数据列,其中id为主键,自增,xid为唯一性索引

  为了三种测试场景的基准对等,数据初始化会按照如下的三种方式来进行。

数据初始化

create table test_data(id int primary key auto_increment,xid int unique key,name varchar(30)) engine=innodb;
insert into test_data(xid,name) values(1,'aa'),(2,'bb'),(3,'cc');
 Query OK, 3 rows affected (0.01 sec)
 Records: 3  Duplicates: 0  Warnings: 0
select *from test_data;
 +----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  1 |    1 | aa   |
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 +----+------+------+
 3 rows in set (0.00 sec)

insert ignore into

insert ignore into test_data(xid,name) values(1,'aa');
 Query OK, 0 rows affected, 1 warning 
CREATE TABLE `test_data` (
   `id` int(11) NOT NULL AUTO_INCREMENT,
   `xid` int(11) DEFAULT NULL,
   `name` varchar(30) DEFAULT NULL,
   PRIMARY KEY (`id`),
   UNIQUE KEY `xid` (`xid`)
 ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8
insert ignore into test_data(xid,name) values(1,'aaa');
 Query OK, 0 rows affected, 1 warning (0.01 sec)

 mysql--root@localhost:test 18:58:13>>show warnings;
 +---------+------+-----------------------------------+
 | Level   | Code | Message                           |
 +---------+------+-----------------------------------+
 | Warning | 1062 | Duplicate entry '1' for key 'xid' |
 +---------+------+-----------------------------------+
insert ignore into test_data(xid,name) values(4,'dd');
 Query OK, 1 row affected (0.00 sec)
Create Table: CREATE TABLE `test_data` (
   `id` int(11) NOT NULL AUTO_INCREMENT,
   `xid` int(11) DEFAULT NULL,
   `name` varchar(30) DEFAULT NULL,
   PRIMARY KEY (`id`),
   UNIQUE KEY `xid` (`xid`)
 ) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8
>select * from test_data;
 +----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  1 |    1 | aa   |
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 |  6 |    4 | dd   |
 +----+------+------+
 4 rows in set (0.00 sec)

replace into

replace into test_data(xid,name) values(1,'aa');
 Query OK, 2 rows affected (0.00 sec)
+----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 |  4 |    1 | aa   |
 +----+------+------+
 3 rows in set (0.00 sec)
replace into test_data(xid,name) values(1,'aaa');
 Query OK, 2 rows affected (0.01 sec)
select *from test_data;
 +----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 |  5 |    1 | aaa  |
 +----+------+------+
replace into test_data(xid,name) values(4,'cc');
 Query OK, 1 row affected (0.00 sec)
select *from test_data;
 +----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 |  5 |    1 | aaa  |
 |  6 |    4 | dd   |
 +----+------+------+
 4 rows in set (0.00 sec)

insert into on duplicate

insert into test_data(xid,name) values(1,'aa') on duplicate key update xid=xid;
 Query OK, 0 rows affected (0.00 sec)
 insert into test_data(xid,name) values(1,'aa') on duplicate key update xid=xid, name=name;
 Query OK, 0 rows affected (0.01 sec)
+----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  1 |    1 | aa   |
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 +----+------+------+
 3 rows in set (0.00 sec)
insert into test_data(xid,name) values(1,'aaa') on duplicate key update xid=xid;
 Query OK, 0 rows affected (0.01 sec)

 insert into test_data(xid,name) values(1,'aaa') on duplicate key update xid=xid,name=name;
 Query OK, 0 rows affected (0.00 sec)
insert into test_data(xid,name) values(4,'cc') on duplicate key update xid=xid;
 Query OK, 1 row affected (0.01 sec)
 insert into test_data(xid,name) values(4,'ccc') on duplicate key update xid=xid, name=name;
 Query OK, 0 rows affected (0.00 sec)
select * from test_data;
 +----+------+------+
 | id | xid  | name |
 +----+------+------+
 |  1 |    1 | aa   |
 |  2 |    2 | bb   |
 |  3 |    3 | cc   |
 |  8 |    4 | cc   |
 +----+------+------+
 4 rows in set (0.00 sec)

小结:在这个场景里面,可以看到三种场景的变化真是很大,而且区别也很明显。 

insert ignore into如果不指定自增列,尽管没有写入数据,但是自增列依然会自增

replace into如果不指定自增列,会看到数据重新写入的效果已经非常明显,而且自增列始终会自动维护。

insert into on duplicate对于重复数据依然会消耗自增列值,实现相对更加灵活。