minHash和LSH算法
原理
Jaccard相似度
判断两个集合是否相等,一般使用称之为Jaccard相似度的算法(后面用Jac(S1,S2)来表示集合S1和S2的Jaccard相似度)。举个列子,集合X = {a,b,c},Y = {b,c,d}。那么Jac(X,Y) = 2 / 4 = 0.50。也就是说,结合X和Y有50%的元素相同。下面是形式的表述Jaccard相似度公式:
Jac(X,Y) = |X∩Y| / |X∪Y|
也就是两个结合交集的个数比上两个集合并集的个数。范围在[0,1]之间。
minHash
举个例子,S1 = {a,d,e},S2 = {c, e},设全集U = {a,b,c,d,e}。集合可以如下表示:
上表中,列表示集合,行表示元素,值1表示某个集合具有某个值,0则相反。Minhash算法大体思路是:采用一种hash函数,将元素的位置均匀打乱,然后将新顺序下每个集合第一个元素作为该集合的特征值。比如哈希函数h1(i) = (i + 1) % 5,其中i为行号。作用于集合S1和S2,得到如下结果:
这时,Minhash(S1) = e,Minhash(S2) = e。也就是说用元素e表示S1,用元素e表示集合S2。
LSH – 局部敏感哈希
现在有了原始集合的摘要,但是还是没有解决最初的问题,仍然需要遍历所有的集合对,,才能所有相似的集合对,复杂度仍然是O(n2)。所以,接下来描述解决这个问题的核心思想LSH。其基本思路是将相似的集合聚集到一起,减小查找范围,避免比较不相似的集合。仍然是从例子开始,现在有5个集合,计算出对应的Minhash摘要,如下:
上面的集合摘要采用了12个不同的hash函数计算出来,然后分成了B = 4个区间。前面已经分析过,任意两个集合(S1,S2)对应的Minhash值相等的概率r = Jac(S1,S2)。先分析区间1,在这个区间内,P(集合S1等于集合S2) = r3。所以只要S1和S2的Jaccard相似度越高,在区间1内越有可能完成全一致,反过来也一样。那么P(集合S1不等于集合S2) = 1 - r3。现在有4个区间,其他区间与第一个相同,所以P(4个区间上,集合S1都不等于集合S2) = (1 – r3)4。P(4个区间上,至少有一个区间,集合S1等于集合S2) = 1 - (1 – r3)4。这里的概率是一个r的函数,形状犹如一个S型,如下:
如果令区间个数为B,每个区间内的行数为C,那么上面的公式可以形式的表示为:
P(B个区间中至少有一个区间中两个结合相等) = 1 - (1 - rC)B
令r = 0.4,C=3,B = 100。上述公式计算的概率为0.9986585。这表明两个Jaccard相似度为0.4的集合在至少一个区间内冲撞的概率达到了99.9%。根据这一事实,我们只需要选取合适的B和C,和一个冲撞率很低的hash函数,就可以将相似的集合至少在一个区间内冲撞,这样也就达成了本节最开始的目的:将相似的集合放到一起。具体的方法是为B个区间,准备B个hash表,和区间编号一一对应,然后用hash函数将每个区间的部分集合映射到对应hash表里。最后遍历所有的hash表,将冲撞的集合作为候选对象进行比较,找出相识的集合对。整个过程是采用O(n)的时间复杂度,因为B和C均是常量。由于聚到一起的集合相比于整体比较少,所以在这小范围内互相比较的时间开销也可以计算为常量,那么总体的计算时间也是O(n)。
代码
方法一:引用python包datasketch
安装:
pip install datasketch
使用示例如下:
MinHash
from datasketch import MinHash
data1 = ['minhash', 'is', 'a', 'probabilistic', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'datasets']
data2 = ['minhash', 'is', 'a', 'probability', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'documents']
m1, m2 = MinHash(), MinHash()
for d in data1:
m1.update(d.encode('utf8'))
for d in data2:
m2.update(d.encode('utf8'))
print("Estimated Jaccard for data1 and data2 is", m1.jaccard(m2))
s1 = set(data1)
s2 = set(data2)
actual_jaccard = float(len(s1.intersection(s2)))/float(len(s1.union(s2)))
print("Actual Jaccard for data1 and data2 is", actual_jaccard)
MinHash LSH
from datasketch import MinHash, MinHashLSH
set1 = set(['minhash', 'is', 'a', 'probabilistic', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'datasets'])
set2 = set(['minhash', 'is', 'a', 'probability', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'documents'])
set3 = set(['minhash', 'is', 'probability', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'documents'])
m1 = MinHash(num_perm=128)
m2 = MinHash(num_perm=128)
m3 = MinHash(num_perm=128)
for d in set1:
m1.update(d.encode('utf8'))
for d in set2:
m2.update(d.encode('utf8'))
for d in set3:
m3.update(d.encode('utf8'))
# Create LSH index
lsh = MinHashLSH(threshold=0.5, num_perm=128)
lsh.insert("m2", m2)
lsh.insert("m3", m3)
result = lsh.query(m1)
print("Approximate neighbours with Jaccard similarity > 0.5", result)
MinHash LSH Forest——局部敏感随机投影森林
from datasketch import MinHashLSHForest, MinHash
data1 = ['minhash', 'is', 'a', 'probabilistic', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'datasets']
data2 = ['minhash', 'is', 'a', 'probability', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'documents']
data3 = ['minhash', 'is', 'probability', 'data', 'structure', 'for',
'estimating', 'the', 'similarity', 'between', 'documents']
# Create MinHash objects
m1 = MinHash(num_perm=128)
m2 = MinHash(num_perm=128)
m3 = MinHash(num_perm=128)
for d in data1:
m1.update(d.encode('utf8'))
for d in data2:
m2.update(d.encode('utf8'))
for d in data3:
m3.update(d.encode('utf8'))
# Create a MinHash LSH Forest with the same num_perm parameter
forest = MinHashLSHForest(num_perm=128)
# Add m2 and m3 into the index
forest.add("m2", m2)
forest.add("m3", m3)
# IMPORTANT: must call index() otherwise the keys won't be searchable
forest.index()
# Check for membership using the key
print("m2" in forest)
print("m3" in forest)
# Using m1 as the query, retrieve top 2 keys that have the higest Jaccard
result = forest.query(m1, 2)
print("Top 2 candidates", result)
方法二
minHash源码实现如下:
from random import randint, seed, choice, random
import string
import sys
import itertools
def generate_random_docs(n_docs, max_doc_length, n_similar_docs):
for i in range(n_docs):
if n_similar_docs > 0 and i % 10 == 0 and i > 0:
permuted_doc = list(lastDoc)
permuted_doc[randint(0,len(permuted_doc))] = choice('1234567890')
n_similar_docs -= 1
yield ''.join(permuted_doc)
else:
lastDoc = ''.join(choice('aaeioutgrb ') for _ in range(randint(int(max_doc_length*.75), max_doc_length)))
yield lastDoc
def generate_shingles(doc, shingle_size):
shingles = set([])
for i in range(len(doc)-shingle_size+1):
shingles.add(doc[i:i+shingle_size])
return shingles
def get_minhash(shingles, n_hashes, random_strings):
minhash_row = []
for i in range(n_hashes):
minhash = sys.maxsize
for shingle in shingles:
hash_candidate = abs(hash(shingle + random_strings[i]))
if hash_candidate < minhash:
minhash = hash_candidate
minhash_row.append(minhash)
return minhash_row
def get_band_hashes(minhash_row, band_size):
band_hashes = []
for i in range(len(minhash_row)):
if i % band_size == 0:
if i > 0:
band_hashes.append(band_hash)
band_hash = 0
band_hash += hash(minhash_row[i])
return band_hashes
def get_similar_docs(docs, n_hashes=400, band_size=7, shingle_size=3, collectIndexes=True):
hash_bands = {}
random_strings = [str(random()) for _ in range(n_hashes)]
docNum = 0
for doc in docs:
shingles = generate_shingles(doc, shingle_size)
minhash_row = get_minhash(shingles, n_hashes, random_strings)
band_hashes = get_band_hashes(minhash_row, band_size)
docMember = docNum if collectIndexes else doc
for i in range(len(band_hashes)):
if i not in hash_bands:
hash_bands[i] = {}
if band_hashes[i] not in hash_bands[i]:
hash_bands[i][band_hashes[i]] = [docMember]
else:
hash_bands[i][band_hashes[i]].append(docMember)
docNum += 1
similar_docs = set()
for i in hash_bands:
for hash_num in hash_bands[i]:
if len(hash_bands[i][hash_num]) > 1:
for pair in itertools.combinations(hash_bands[i][hash_num], r=2):
similar_docs.add(pair)
return similar_docs
if __name__ == '__main__':
n_hashes = 200
band_size = 7
shingle_size = 3
n_docs = 1000
max_doc_length = 40
n_similar_docs = 10
seed(42)
docs = generate_random_docs(n_docs, max_doc_length, n_similar_docs)
similar_docs = get_similar_docs(docs, n_hashes, band_size, shingle_size, collectIndexes=False)
print(similar_docs)
r = float(n_hashes/band_size)
similarity = (1/r)**(1/float(band_size))
print("similarity: %f" % similarity)
print("# Similar Pairs: %d" % len(similar_docs))
if len(similar_docs) == n_similar_docs:
print("Test Passed: All similar pairs found.")
else:
print("Test Failed.")
参考资料
[1] 利用Minhash和LSH寻找相似的集合
[2] datasketchhttps://ekzhu.github.io/datasketch/