MySQL 多表关联一对多查询取最新的一条数据
遇到的问题
多表关联一对多查询取最新的一条数据,数据出现重复
由于历史原因,表结构设计不合理;产品告诉我说需要导出客户信息数据,需要导出客户的 所属行业,纳税性质 数据;但是这两个字段却在订单表里面,每次客户下单都会要求客户填写;由此可知,客户数据和订单数据是一对多的关系;那这样的话,问题就来了,我到底以订单中的哪一条数据为准呢?经过协商后一致同意以最新的一条数据为准;
数据测试初始化SQL脚本
DROP TABLE IF EXISTS `customer`;
CREATE TABLE `customer` (
`id` BIGINT NOT NULL COMMENT '客户ID',
`real_name` VARCHAR(20) NOT NULL COMMENT '客户名字',
`create_time` DATETIME NOT NULL COMMENT '创建时间',
PRIMARY KEY(`id`)
)ENGINE=INNODB DEFAULT CHARSET = UTF8 COMMENT '客户信息表';
-- DATA FOR TABLE customer
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7717194510959685632', '张三', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7718605481599623168', '李四', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7720804666226278400', '王五', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7720882041353961472', '刘六', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722233303626055680', '宝宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722233895811448832', '小宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722234507982700544', '大宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722234927631204352', '二宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722235550724423680', '小贱', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722235921488314368', '小明', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722238233975881728', '小黑', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722246644138409984', '小红', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722318634321346560', '阿狗', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722318674321346586', '阿娇', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722318974421546780', '阿猫', '2019-01-23 16:23:05');
DROP TABLE IF EXISTS `order_info`;
CREATE TABLE `order_info` (
`id` BIGINT NOT NULL COMMENT '订单ID',
`industry` VARCHAR(255) DEFAULT NULL COMMENT '所属行业',
`nature_tax` VARCHAR(255) DEFAULT NULL COMMENT '纳税性质',
`customer_id` VARCHAR(20) NOT NULL COMMENT '客户ID',
`create_time` DATETIME NOT NULL COMMENT '创建时间',
PRIMARY KEY(`id`)
)ENGINE=INNODB DEFAULT CHARSET = UTF8 COMMENT '订单信息表';
-- DATA FOR TABLE order_info
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700163609453207552', '餐饮酒店类', '小规模', '7717194510959685632', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700163609453207553', '餐饮酒店类', '小规模', '7717194510959685632', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700167995646615552', '高新技术', '一般纳税人', '7718605481599623168', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700167995646615553', '商贸', '一般纳税人', '7718605481599623168', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700193633216569344', '商贸', '一般纳税人', '7720804666226278400', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700193633216569345', '高新技术', '一般纳税人', '7720804666226278400', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700197875671179264', '餐饮酒店类', '一般纳税人', '7720882041353961472', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700197875671179266', '餐饮酒店类', '一般纳税人', '7720882041353961472', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7703053372673171456', '高新技术', '小规模', '7722233303626055680', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7703053372673171457', '高新技术', '小规模', '7722233303626055680', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709742385262698496', '服务类', '一般纳税人', '7722233895811448832', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709742385262698498', '服务类', '一般纳税人', '7722233895811448832', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745055683780608', '高新技术', '小规模', '7722234507982700544', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745055683780609', '进出口', '小规模', '7722234507982700544', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745249439653888', '文化体育', '一般纳税人', '7722234927631204352', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745249439653889', '高新技术', '一般纳税人', '7722234927631204352', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745453266051072', '高新技术', '小规模', '7722235550724423680', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745453266051073', '文化体育', '小规模', '7722235550724423680', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745539848413184', '科技', '一般纳税人', '7722235921488314368', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745539848413185', '高新技术', '一般纳税人', '7722235921488314368', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745652603887616', '高新技术', '一般纳税人', '7722238233975881728', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745652603887617', '科技', '一般纳税人', '7722238233975881728', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745755528568832', '进出口', '一般纳税人', '7722246644138409984', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745755528568833', '教育咨询', '小规模', '7722246644138409984', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745892539047936', '教育咨询', '一般纳税人', '7722318634321346560', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745892539047937', '进出口', '一般纳税人', '7722318634321346560', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746000127139840', '生产类', '小规模', '7722318674321346586', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746000127139841', '农业', '一般纳税人', '7722318674321346586', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746447445467136', '农业', '一般纳税人', '7722318974421546780', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746447445467137', '生产类', '小规模', '7722318974421546780', '2019-01-23 17:09:53');
- 按需求写的SQL语句:
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(create_time) AS create_time, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.create_time = b.create_time
) AS oi ON oi.customer_id = cr.id;
- 查询结果如下:
+---------------------+-----------+------------+------------+
| id | real_name | industry | nature_tax |
+---------------------+-----------+------------+------------+
| 7717194510959685632 | 张三 | 餐饮酒店类 | 小规模 |
| 7718605481599623168 | 李四 | 商贸 | 一般纳税人 |
| 7720804666226278400 | 王五 | 高新技术 | 一般纳税人 |
| 7720882041353961472 | 刘六 | 餐饮酒店类 | 一般纳税人 |
| 7722233303626055680 | 宝宝 | 高新技术 | 小规模 |
| 7722233895811448832 | 小宝 | 服务类 | 一般纳税人 |
| 7722234507982700544 | 大宝 | 进出口 | 小规模 |
| 7722234927631204352 | 二宝 | 文化体育 | 一般纳税人 |
| 7722235550724423680 | 小贱 | 高新技术 | 小规模 |
| 7722235921488314368 | 小明 | 科技 | 一般纳税人 |
| 7722238233975881728 | 小黑 | 高新技术 | 一般纳税人 |
| 7722246644138409984 | 小红 | 进出口 | 一般纳税人 |
| 7722318634321346560 | 阿狗 | 教育咨询 | 一般纳税人 |
| 7722318674321346586 | 阿娇 | 生产类 | 小规模 |
| 7722318974421546780 | 阿猫 | 农业 | 一般纳税人 |
+---------------------+-----------+------------+------------+
15 rows in set (0.01 sec)
看到这里我笑了,这个任务算是完成了,终于不用加班了,哈哈哈哈哈!!!我以为问题终于解决了,没想到事与愿违,我以为只是我以为,仅此而已;不久后测试妹子告诉我说你的数据出现重复了,你快过来看下呢;
解决数据重复问题
什么也别问,什么也别管,先执行下边的SQL,我不会告诉你这是为了重现重复数据问题的;
UPDATE order_info SET create_time = NOW();
- 尝试解决问题
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(create_time) AS create_time, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.create_time = b.create_time
) AS oi ON oi.customer_id = cr.id
GROUP BY cr.id;
数据重复嘛,小意思,加个 GROUP BY 不就解决了吗?我怎么会这么机智,哈哈哈!!!但是当我执行完SQL的那一瞬间,我又懵逼了,查询出来的结果中 所属行业,纳税性质 仍然不是最新的;看来是我想太多了,还是老老实实的解决问题吧。。。
- 找出重复数据
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(create_time) AS create_time, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.create_time = b.create_time
) AS oi ON oi.customer_id = cr.id
GROUP BY cr.id HAVING COUNT(cr.id) >= 2;
- 执行结果如下:
+---------------------+-----------+------------+------------+
| id | real_name | industry | nature_tax |
+---------------------+-----------+------------+------------+
| 7717194510959685632 | 张三 | 餐饮酒店类 | 小规模 |
| 7718605481599623168 | 李四 | 高新技术 | 一般纳税人 |
| 7720804666226278400 | 王五 | 商贸 | 一般纳税人 |
| 7720882041353961472 | 刘六 | 餐饮酒店类 | 一般纳税人 |
| 7722233303626055680 | 宝宝 | 高新技术 | 小规模 |
| 7722233895811448832 | 小宝 | 服务类 | 一般纳税人 |
| 7722234507982700544 | 大宝 | 高新技术 | 小规模 |
| 7722234927631204352 | 二宝 | 文化体育 | 一般纳税人 |
| 7722235550724423680 | 小贱 | 高新技术 | 小规模 |
| 7722235921488314368 | 小明 | 科技 | 一般纳税人 |
| 7722238233975881728 | 小黑 | 高新技术 | 一般纳税人 |
| 7722246644138409984 | 小红 | 进出口 | 一般纳税人 |
| 7722318634321346560 | 阿狗 | 教育咨询 | 一般纳税人 |
| 7722318674321346586 | 阿娇 | 生产类 | 小规模 |
| 7722318974421546780 | 阿猫 | 农业 | 一般纳税人 |
+---------------------+-----------+------------+------------+
15 rows in set (0.00 sec)
看到数据的那一瞬间,我懵逼了!这么多重复的,是怎么造成的?直到我看了order_info表的数据之后,瞬间恍然大悟了;原来是create_time的数据重复了,好吧,我又粗心大意了一会;后来想了下,决定用order_info表的ID来做,问题完美解决;顺便说下,我们的ID是由程序自动生成【Twitter的雪花算法(snowflake)自增ID】,依次递增的,所以不用担心取到的数据不是最新的问题;
- 解决问题
温馨提示:要看到正确的数据,请从新初始化一下order_info这张表,因为为了复现数据重复问题,我把order_info表所有的数据的create_time改成一样的了;
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(id) AS id, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.id = b.id
) AS oi ON oi.customer_id = cr.id;
哎,终于解决了。。。