一、聚合函数使用

SQL共有五个聚合函数,分别是 sum,avg,max,min,count,下面来一一介绍

执行下面的sql脚本

/*
SQLyog Ultimate v10.00 Beta1
MySQL - 5.5.15 : Database - myemployees
*********************************************************************
*/


/*!40101 SET NAMES utf8 */;

/*!40101 SET SQL_MODE=''*/;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;


/*Table structure for table `departments` */

DROP TABLE IF EXISTS `departments`;

CREATE TABLE `departments` (
  `department_id` int(4) NOT NULL AUTO_INCREMENT,
  `department_name` varchar(3) DEFAULT NULL,
  `manager_id` int(6) DEFAULT NULL,
  `location_id` int(4) DEFAULT NULL,
  PRIMARY KEY (`department_id`),
  KEY `loc_id_fk` (`location_id`),
  CONSTRAINT `loc_id_fk` FOREIGN KEY (`location_id`) REFERENCES `locations` (`location_id`)
) ENGINE=InnoDB AUTO_INCREMENT=271 DEFAULT CHARSET=gb2312;

/*Data for the table `departments` */

insert  into `departments`(`department_id`,`department_name`,`manager_id`,`location_id`) values (10,'Adm',200,1700),(20,'Mar',201,1800),(30,'Pur',114,1700),(40,'Hum',203,2400),(50,'Shi',121,1500),(60,'IT',103,1400),(70,'Pub',204,2700),(80,'Sal',145,2500),(90,'Exe',100,1700),(100,'Fin',108,1700),(110,'Acc',205,1700),(120,'Tre',NULL,1700),(130,'Cor',NULL,1700),(140,'Con',NULL,1700),(150,'Sha',NULL,1700),(160,'Ben',NULL,1700),(170,'Man',NULL,1700),(180,'Con',NULL,1700),(190,'Con',NULL,1700),(200,'Ope',NULL,1700),(210,'IT ',NULL,1700),(220,'NOC',NULL,1700),(230,'IT ',NULL,1700),(240,'Gov',NULL,1700),(250,'Ret',NULL,1700),(260,'Rec',NULL,1700),(270,'Pay',NULL,1700);

/*Table structure for table `employees` */

DROP TABLE IF EXISTS `employees`;

CREATE TABLE `employees` (
  `employee_id` int(6) NOT NULL AUTO_INCREMENT,
  `first_name` varchar(20) DEFAULT NULL,
  `last_name` varchar(25) DEFAULT NULL,
  `email` varchar(25) DEFAULT NULL,
  `phone_number` varchar(20) DEFAULT NULL,
  `job_id` varchar(10) DEFAULT NULL,
  `salary` double(10,2) DEFAULT NULL,
  `commission_pct` double(4,2) DEFAULT NULL,
  `manager_id` int(6) DEFAULT NULL,
  `department_id` int(4) DEFAULT NULL,
  `hiredate` datetime DEFAULT NULL,
  PRIMARY KEY (`employee_id`),
  KEY `dept_id_fk` (`department_id`),
  KEY `job_id_fk` (`job_id`),
  CONSTRAINT `dept_id_fk` FOREIGN KEY (`department_id`) REFERENCES `departments` (`department_id`),
  CONSTRAINT `job_id_fk` FOREIGN KEY (`job_id`) REFERENCES `jobs` (`job_id`)
) ENGINE=InnoDB AUTO_INCREMENT=207 DEFAULT CHARSET=gb2312;

/*Data for the table `employees` */

insert  into `employees`(`employee_id`,`first_name`,`last_name`,`email`,`phone_number`,`job_id`,`salary`,`commission_pct`,`manager_id`,`department_id`,`hiredate`) values (100,'Steven','K_ing','SKING','515.123.4567','AD_PRES',24000.00,NULL,NULL,90,'1992-04-03 00:00:00'),(101,'Neena','Kochhar','NKOCHHAR','515.123.4568','AD_VP',17000.00,NULL,100,90,'1992-04-03 00:00:00'),(102,'Lex','De Haan','LDEHAAN','515.123.4569','AD_VP',17000.00,NULL,100,90,'1992-04-03 00:00:00'),(103,'Alexander','Hunold','AHUNOLD','590.423.4567','IT_PROG',9000.00,NULL,102,60,'1992-04-03 00:00:00'),(104,'Bruce','Ernst','BERNST','590.423.4568','IT_PROG',6000.00,NULL,103,60,'1992-04-03 00:00:00'),(105,'David','Austin','DAUSTIN','590.423.4569','IT_PROG',4800.00,NULL,103,60,'1998-03-03 00:00:00'),(106,'Valli','Pataballa','VPATABAL','590.423.4560','IT_PROG',4800.00,NULL,103,60,'1998-03-03 00:00:00'),(107,'Diana','Lorentz','DLORENTZ','590.423.5567','IT_PROG',4200.00,NULL,103,60,'1998-03-03 00:00:00'),(108,'Nancy','Greenberg','NGREENBE','515.124.4569','FI_MGR',12000.00,NULL,101,100,'1998-03-03 00:00:00'),(109,'Daniel','Faviet','DFAVIET','515.124.4169','FI_ACCOUNT',9000.00,NULL,108,100,'1998-03-03 00:00:00'),(110,'John','Chen','JCHEN','515.124.4269','FI_ACCOUNT',8200.00,NULL,108,100,'2000-09-09 00:00:00'),(111,'Ismael','Sciarra','ISCIARRA','515.124.4369','FI_ACCOUNT',7700.00,NULL,108,100,'2000-09-09 00:00:00'),(112,'Jose Manuel','Urman','JMURMAN','515.124.4469','FI_ACCOUNT',7800.00,NULL,108,100,'2000-09-09 00:00:00'),(113,'Luis','Popp','LPOPP','515.124.4567','FI_ACCOUNT',6900.00,NULL,108,100,'2000-09-09 00:00:00'),(114,'Den','Raphaely','DRAPHEAL','515.127.4561','PU_MAN',11000.00,NULL,100,30,'2000-09-09 00:00:00'),(115,'Alexander','Khoo','AKHOO','515.127.4562','PU_CLERK',3100.00,NULL,114,30,'2000-09-09 00:00:00'),(116,'Shelli','Baida','SBAIDA','515.127.4563','PU_CLERK',2900.00,NULL,114,30,'2000-09-09 00:00:00'),(117,'Sigal','Tobias','STOBIAS','515.127.4564','PU_CLERK',2800.00,NULL,114,30,'2000-09-09 00:00:00'),(118,'Guy','Himuro','GHIMURO','515.127.4565','PU_CLERK',2600.00,NULL,114,30,'2000-09-09 00:00:00'),(119,'Karen','Colmenares','KCOLMENA','515.127.4566','PU_CLERK',2500.00,NULL,114,30,'2000-09-09 00:00:00'),(120,'Matthew','Weiss','MWEISS','650.123.1234','ST_MAN',8000.00,NULL,100,50,'2004-02-06 00:00:00'),(121,'Adam','Fripp','AFRIPP','650.123.2234','ST_MAN',8200.00,NULL,100,50,'2004-02-06 00:00:00'),(122,'Payam','Kaufling','PKAUFLIN','650.123.3234','ST_MAN',7900.00,NULL,100,50,'2004-02-06 00:00:00'),(123,'Shanta','Vollman','SVOLLMAN','650.123.4234','ST_MAN',6500.00,NULL,100,50,'2004-02-06 00:00:00'),(124,'Kevin','Mourgos','KMOURGOS','650.123.5234','ST_MAN',5800.00,NULL,100,50,'2004-02-06 00:00:00'),(125,'Julia','Nayer','JNAYER','650.124.1214','ST_CLERK',3200.00,NULL,120,50,'2004-02-06 00:00:00'),(126,'Irene','Mikkilineni','IMIKKILI','650.124.1224','ST_CLERK',2700.00,NULL,120,50,'2004-02-06 00:00:00'),(127,'James','Landry','JLANDRY','650.124.1334','ST_CLERK',2400.00,NULL,120,50,'2004-02-06 00:00:00'),(128,'Steven','Markle','SMARKLE','650.124.1434','ST_CLERK',2200.00,NULL,120,50,'2004-02-06 00:00:00'),(129,'Laura','Bissot','LBISSOT','650.124.5234','ST_CLERK',3300.00,NULL,121,50,'2004-02-06 00:00:00'),(130,'Mozhe','Atkinson','MATKINSO','650.124.6234','ST_CLERK',2800.00,NULL,121,50,'2004-02-06 00:00:00'),(131,'James','Marlow','JAMRLOW','650.124.7234','ST_CLERK',2500.00,NULL,121,50,'2004-02-06 00:00:00'),(132,'TJ','Olson','TJOLSON','650.124.8234','ST_CLERK',2100.00,NULL,121,50,'2004-02-06 00:00:00'),(133,'Jason','Mallin','JMALLIN','650.127.1934','ST_CLERK',3300.00,NULL,122,50,'2004-02-06 00:00:00'),(134,'Michael','Rogers','MROGERS','650.127.1834','ST_CLERK',2900.00,NULL,122,50,'2002-12-23 00:00:00'),(135,'Ki','Gee','KGEE','650.127.1734','ST_CLERK',2400.00,NULL,122,50,'2002-12-23 00:00:00'),(136,'Hazel','Philtanker','HPHILTAN','650.127.1634','ST_CLERK',2200.00,NULL,122,50,'2002-12-23 00:00:00'),(137,'Renske','Ladwig','RLADWIG','650.121.1234','ST_CLERK',3600.00,NULL,123,50,'2002-12-23 00:00:00'),(138,'Stephen','Stiles','SSTILES','650.121.2034','ST_CLERK',3200.00,NULL,123,50,'2002-12-23 00:00:00'),(139,'John','Seo','JSEO','650.121.2019','ST_CLERK',2700.00,NULL,123,50,'2002-12-23 00:00:00'),(140,'Joshua','Patel','JPATEL','650.121.1834','ST_CLERK',2500.00,NULL,123,50,'2002-12-23 00:00:00'),(141,'Trenna','Rajs','TRAJS','650.121.8009','ST_CLERK',3500.00,NULL,124,50,'2002-12-23 00:00:00'),(142,'Curtis','Davies','CDAVIES','650.121.2994','ST_CLERK',3100.00,NULL,124,50,'2002-12-23 00:00:00'),(143,'Randall','Matos','RMATOS','650.121.2874','ST_CLERK',2600.00,NULL,124,50,'2002-12-23 00:00:00'),(144,'Peter','Vargas','PVARGAS','650.121.2004','ST_CLERK',2500.00,NULL,124,50,'2002-12-23 00:00:00'),(145,'John','Russell','JRUSSEL','011.44.1344.429268','SA_MAN',14000.00,0.40,100,80,'2002-12-23 00:00:00'),(146,'Karen','Partners','KPARTNER','011.44.1344.467268','SA_MAN',13500.00,0.30,100,80,'2002-12-23 00:00:00'),(147,'Alberto','Errazuriz','AERRAZUR','011.44.1344.429278','SA_MAN',12000.00,0.30,100,80,'2002-12-23 00:00:00'),(148,'Gerald','Cambrault','GCAMBRAU','011.44.1344.619268','SA_MAN',11000.00,0.30,100,80,'2002-12-23 00:00:00'),(149,'Eleni','Zlotkey','EZLOTKEY','011.44.1344.429018','SA_MAN',10500.00,0.20,100,80,'2002-12-23 00:00:00'),(150,'Peter','Tucker','PTUCKER','011.44.1344.129268','SA_REP',10000.00,0.30,145,80,'2014-03-05 00:00:00'),(151,'David','Bernstein','DBERNSTE','011.44.1344.345268','SA_REP',9500.00,0.25,145,80,'2014-03-05 00:00:00'),(152,'Peter','Hall','PHALL','011.44.1344.478968','SA_REP',9000.00,0.25,145,80,'2014-03-05 00:00:00'),(153,'Christopher','Olsen','COLSEN','011.44.1344.498718','SA_REP',8000.00,0.20,145,80,'2014-03-05 00:00:00'),(154,'Nanette','Cambrault','NCAMBRAU','011.44.1344.987668','SA_REP',7500.00,0.20,145,80,'2014-03-05 00:00:00'),(155,'Oliver','Tuvault','OTUVAULT','011.44.1344.486508','SA_REP',7000.00,0.15,145,80,'2014-03-05 00:00:00'),(156,'Janette','K_ing','JKING','011.44.1345.429268','SA_REP',10000.00,0.35,146,80,'2014-03-05 00:00:00'),(157,'Patrick','Sully','PSULLY','011.44.1345.929268','SA_REP',9500.00,0.35,146,80,'2014-03-05 00:00:00'),(158,'Allan','McEwen','AMCEWEN','011.44.1345.829268','SA_REP',9000.00,0.35,146,80,'2014-03-05 00:00:00'),(159,'Lindsey','Smith','LSMITH','011.44.1345.729268','SA_REP',8000.00,0.30,146,80,'2014-03-05 00:00:00'),(160,'Louise','Doran','LDORAN','011.44.1345.629268','SA_REP',7500.00,0.30,146,80,'2014-03-05 00:00:00'),(161,'Sarath','Sewall','SSEWALL','011.44.1345.529268','SA_REP',7000.00,0.25,146,80,'2014-03-05 00:00:00'),(162,'Clara','Vishney','CVISHNEY','011.44.1346.129268','SA_REP',10500.00,0.25,147,80,'2014-03-05 00:00:00'),(163,'Danielle','Greene','DGREENE','011.44.1346.229268','SA_REP',9500.00,0.15,147,80,'2014-03-05 00:00:00'),(164,'Mattea','Marvins','MMARVINS','011.44.1346.329268','SA_REP',7200.00,0.10,147,80,'2014-03-05 00:00:00'),(165,'David','Lee','DLEE','011.44.1346.529268','SA_REP',6800.00,0.10,147,80,'2014-03-05 00:00:00'),(166,'Sundar','Ande','SANDE','011.44.1346.629268','SA_REP',6400.00,0.10,147,80,'2014-03-05 00:00:00'),(167,'Amit','Banda','ABANDA','011.44.1346.729268','SA_REP',6200.00,0.10,147,80,'2014-03-05 00:00:00'),(168,'Lisa','Ozer','LOZER','011.44.1343.929268','SA_REP',11500.00,0.25,148,80,'2014-03-05 00:00:00'),(169,'Harrison','Bloom','HBLOOM','011.44.1343.829268','SA_REP',10000.00,0.20,148,80,'2014-03-05 00:00:00'),(170,'Tayler','Fox','TFOX','011.44.1343.729268','SA_REP',9600.00,0.20,148,80,'2014-03-05 00:00:00'),(171,'William','Smith','WSMITH','011.44.1343.629268','SA_REP',7400.00,0.15,148,80,'2014-03-05 00:00:00'),(172,'Elizabeth','Bates','EBATES','011.44.1343.529268','SA_REP',7300.00,0.15,148,80,'2014-03-05 00:00:00'),(173,'Sundita','Kumar','SKUMAR','011.44.1343.329268','SA_REP',6100.00,0.10,148,80,'2014-03-05 00:00:00'),(174,'Ellen','Abel','EABEL','011.44.1644.429267','SA_REP',11000.00,0.30,149,80,'2014-03-05 00:00:00'),(175,'Alyssa','Hutton','AHUTTON','011.44.1644.429266','SA_REP',8800.00,0.25,149,80,'2014-03-05 00:00:00'),(176,'Jonathon','Taylor','JTAYLOR','011.44.1644.429265','SA_REP',8600.00,0.20,149,80,'2014-03-05 00:00:00'),(177,'Jack','Livingston','JLIVINGS','011.44.1644.429264','SA_REP',8400.00,0.20,149,80,'2014-03-05 00:00:00'),(178,'Kimberely','Grant','KGRANT','011.44.1644.429263','SA_REP',7000.00,0.15,149,NULL,'2014-03-05 00:00:00'),(179,'Charles','Johnson','CJOHNSON','011.44.1644.429262','SA_REP',6200.00,0.10,149,80,'2014-03-05 00:00:00'),(180,'Winston','Taylor','WTAYLOR','650.507.9876','SH_CLERK',3200.00,NULL,120,50,'2014-03-05 00:00:00'),(181,'Jean','Fleaur','JFLEAUR','650.507.9877','SH_CLERK',3100.00,NULL,120,50,'2014-03-05 00:00:00'),(182,'Martha','Sullivan','MSULLIVA','650.507.9878','SH_CLERK',2500.00,NULL,120,50,'2014-03-05 00:00:00'),(183,'Girard','Geoni','GGEONI','650.507.9879','SH_CLERK',2800.00,NULL,120,50,'2014-03-05 00:00:00'),(184,'Nandita','Sarchand','NSARCHAN','650.509.1876','SH_CLERK',4200.00,NULL,121,50,'2014-03-05 00:00:00'),(185,'Alexis','Bull','ABULL','650.509.2876','SH_CLERK',4100.00,NULL,121,50,'2014-03-05 00:00:00'),(186,'Julia','Dellinger','JDELLING','650.509.3876','SH_CLERK',3400.00,NULL,121,50,'2014-03-05 00:00:00'),(187,'Anthony','Cabrio','ACABRIO','650.509.4876','SH_CLERK',3000.00,NULL,121,50,'2014-03-05 00:00:00'),(188,'Kelly','Chung','KCHUNG','650.505.1876','SH_CLERK',3800.00,NULL,122,50,'2014-03-05 00:00:00'),(189,'Jennifer','Dilly','JDILLY','650.505.2876','SH_CLERK',3600.00,NULL,122,50,'2014-03-05 00:00:00'),(190,'Timothy','Gates','TGATES','650.505.3876','SH_CLERK',2900.00,NULL,122,50,'2014-03-05 00:00:00'),(191,'Randall','Perkins','RPERKINS','650.505.4876','SH_CLERK',2500.00,NULL,122,50,'2014-03-05 00:00:00'),(192,'Sarah','Bell','SBELL','650.501.1876','SH_CLERK',4000.00,NULL,123,50,'2014-03-05 00:00:00'),(193,'Britney','Everett','BEVERETT','650.501.2876','SH_CLERK',3900.00,NULL,123,50,'2014-03-05 00:00:00'),(194,'Samuel','McCain','SMCCAIN','650.501.3876','SH_CLERK',3200.00,NULL,123,50,'2014-03-05 00:00:00'),(195,'Vance','Jones','VJONES','650.501.4876','SH_CLERK',2800.00,NULL,123,50,'2014-03-05 00:00:00'),(196,'Alana','Walsh','AWALSH','650.507.9811','SH_CLERK',3100.00,NULL,124,50,'2014-03-05 00:00:00'),(197,'Kevin','Feeney','KFEENEY','650.507.9822','SH_CLERK',3000.00,NULL,124,50,'2014-03-05 00:00:00'),(198,'Donald','OConnell','DOCONNEL','650.507.9833','SH_CLERK',2600.00,NULL,124,50,'2014-03-05 00:00:00'),(199,'Douglas','Grant','DGRANT','650.507.9844','SH_CLERK',2600.00,NULL,124,50,'2014-03-05 00:00:00'),(200,'Jennifer','Whalen','JWHALEN','515.123.4444','AD_ASST',4400.00,NULL,101,10,'2016-03-03 00:00:00'),(201,'Michael','Hartstein','MHARTSTE','515.123.5555','MK_MAN',13000.00,NULL,100,20,'2016-03-03 00:00:00'),(202,'Pat','Fay','PFAY','603.123.6666','MK_REP',6000.00,NULL,201,20,'2016-03-03 00:00:00'),(203,'Susan','Mavris','SMAVRIS','515.123.7777','HR_REP',6500.00,NULL,101,40,'2016-03-03 00:00:00'),(204,'Hermann','Baer','HBAER','515.123.8888','PR_REP',10000.00,NULL,101,70,'2016-03-03 00:00:00'),(205,'Shelley','Higgins','SHIGGINS','515.123.8080','AC_MGR',12000.00,NULL,101,110,'2016-03-03 00:00:00'),(206,'William','Gietz','WGIETZ','515.123.8181','AC_ACCOUNT',8300.00,NULL,205,110,'2016-03-03 00:00:00');

/*Table structure for table `jobs` */

DROP TABLE IF EXISTS `jobs`;

CREATE TABLE `jobs` (
  `job_id` varchar(10) NOT NULL,
  `job_title` varchar(35) DEFAULT NULL,
  `min_salary` int(6) DEFAULT NULL,
  `max_salary` int(6) DEFAULT NULL,
  PRIMARY KEY (`job_id`)
) ENGINE=InnoDB DEFAULT CHARSET=gb2312;

/*Data for the table `jobs` */

insert  into `jobs`(`job_id`,`job_title`,`min_salary`,`max_salary`) values ('AC_ACCOUNT','Public Accountant',4200,9000),('AC_MGR','Accounting Manager',8200,16000),('AD_ASST','Administration Assistant',3000,6000),('AD_PRES','President',20000,40000),('AD_VP','Administration Vice President',15000,30000),('FI_ACCOUNT','Accountant',4200,9000),('FI_MGR','Finance Manager',8200,16000),('HR_REP','Human Resources Representative',4000,9000),('IT_PROG','Programmer',4000,10000),('MK_MAN','Marketing Manager',9000,15000),('MK_REP','Marketing Representative',4000,9000),('PR_REP','Public Relations Representative',4500,10500),('PU_CLERK','Purchasing Clerk',2500,5500),('PU_MAN','Purchasing Manager',8000,15000),('SA_MAN','Sales Manager',10000,20000),('SA_REP','Sales Representative',6000,12000),('SH_CLERK','Shipping Clerk',2500,5500),('ST_CLERK','Stock Clerk',2000,5000),('ST_MAN','Stock Manager',5500,8500);

/*Table structure for table `locations` */

DROP TABLE IF EXISTS `locations`;

CREATE TABLE `locations` (
  `location_id` int(11) NOT NULL AUTO_INCREMENT,
  `street_address` varchar(40) DEFAULT NULL,
  `postal_code` varchar(12) DEFAULT NULL,
  `city` varchar(30) DEFAULT NULL,
  `state_province` varchar(25) DEFAULT NULL,
  `country_id` varchar(2) DEFAULT NULL,
  PRIMARY KEY (`location_id`)
) ENGINE=InnoDB AUTO_INCREMENT=3201 DEFAULT CHARSET=gb2312;

/*Data for the table `locations` */

insert  into `locations`(`location_id`,`street_address`,`postal_code`,`city`,`state_province`,`country_id`) values (1000,'1297 Via Cola di Rie','00989','Roma',NULL,'IT'),(1100,'93091 Calle della Testa','10934','Venice',NULL,'IT'),(1200,'2017 Shinjuku-ku','1689','Tokyo','Tokyo Prefecture','JP'),(1300,'9450 Kamiya-cho','6823','Hiroshima',NULL,'JP'),(1400,'2014 Jabberwocky Rd','26192','Southlake','Texas','US'),(1500,'2011 Interiors Blvd','99236','South San Francisco','California','US'),(1600,'2007 Zagora St','50090','South Brunswick','New Jersey','US'),(1700,'2004 Charade Rd','98199','Seattle','Washington','US'),(1800,'147 Spadina Ave','M5V 2L7','Toronto','Ontario','CA'),(1900,'6092 Boxwood St','YSW 9T2','Whitehorse','Yukon','CA'),(2000,'40-5-12 Laogianggen','190518','Beijing',NULL,'CN'),(2100,'1298 Vileparle (E)','490231','Bombay','Maharashtra','IN'),(2200,'12-98 Victoria Street','2901','Sydney','New South Wales','AU'),(2300,'198 Clementi North','540198','Singapore',NULL,'SG'),(2400,'8204 Arthur St',NULL,'London',NULL,'UK'),(2500,'Magdalen Centre, The Oxford Science Park','OX9 9ZB','Oxford','Oxford','UK'),(2600,'9702 Chester Road','09629850293','Stretford','Manchester','UK'),(2700,'Schwanthalerstr. 7031','80925','Munich','Bavaria','DE'),(2800,'Rua Frei Caneca 1360 ','01307-002','Sao Paulo','Sao Paulo','BR'),(2900,'20 Rue des Corps-Saints','1730','Geneva','Geneve','CH'),(3000,'Murtenstrasse 921','3095','Bern','BE','CH'),(3100,'Pieter Breughelstraat 837','3029SK','Utrecht','Utrecht','NL'),(3200,'Mariano Escobedo 9991','11932','Mexico City','Distrito Federal,','MX');

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

注意:1、sum、avg只处理数值类型,max,min,count可以处理任何类型。
2、以上聚合函数在运算时自动忽略null值。
3、和分组函数一同查询的字段,要求是group by 后的字段

  • sum函数使用示例
# 求工资总和
select sum(salary) from employees;
#配合distinct使用,找出有多少种工资
select count( distinct salary) from employees;
  • count函数使用示例
# 查询有多少条记录
select count(*) from employees;
# 查询有多少条记录,这种方式在每一行记录后面又加了一个字段,然后进行统计
# InnoDB存储引擎下,count(*)和count(1)差不多,比count(字段)效率要高
select count(1) from employees;

练习

# 查询员工表中最大入职时间和最小入职时间差的天数
select datediff(max(hiredate),min(hiredate)) from employees;
# 查询部门编号为90的员工个数
select count(*) from employees where department_id = 90;

二、分组+聚合函数使用

# 求出每个部门的平均工资
select ceil(avg(salary)) , department_id from employees group by department_id;
# 求出每个部门的人数
select count(*),department_id from employees group by department_id;
# 查询每种工作的最高工资
select max(salary) , job_id from employees group by job_id;
# 查询每个位置上的部门个数
select count(*),location_id from departments group by location_id;

# 查询每个部门的平均工资,并且department_id不等于80,部门平均工资大于8000,按照工资升序
select avg(salary),department_id
from employees
where department_id != 80
group by department_id
# having 通常对被使用聚合函数的字段进行筛选过滤
having avg(salary) > 8000
order by  avg(salary);

# 查询有奖金的每个领导手下员工的最高工资
select max(salary),manager_id
from employees
where commission_pct is not null
group by manager_id;

对分组之后的过滤要使用having关键字,having 通常对被使用聚合函数的字段进行筛选过滤

having练习1
查询每个工种有奖金的员工最高工资>12000的工种编号和最高工资

# 查询每个工种有奖金的员工最高工资>12000的工种编号和最高工资
/**
      第一步:查询每个工种的最高工资
        select max(salary),job_id
        from employees
        group by job_id;
      第二步:必须是有奖金的员工
        select max(salary),job_id
        from employees
        where commission_pct is not null
        group by job_id;
      第三步:将查询后的条件进行过滤
          select max(salary),job_id
          from employees
          where commission_pct is not null
          group by job_id
          having max(salary) > 12000;
 */
select max(salary),job_id
from employees
where commission_pct is not null
group by job_id
having max(salary) > 12000;

having练习2
查询领导编号>102的每个领导手下的最低工资>5000的领导编号、最低工资

# 查询领导编号>102的每个领导手下的最低工资>5000的领导编号、最低工资
/**
    第一步:查询每个领导手下的最低工资
          select min(salary),manager_id
          from employees
          group by manager_id;

    第二步:领导编号大于102
          select min(salary),manager_id
          from employees
          where manager_id > 102
          group by manager_id;

    第三步:过滤出最低工资大于5000
        select min(salary),manager_id
        from employees
        where manager_id > 102
        group by manager_id
        having min(salary) > 5000;
 */
select min(salary),manager_id
from employees
where manager_id > 102
group by manager_id
having min(salary) > 5000;

having练习3
按员工姓名长度进行分组,查询每一组员工个数,筛选员工个数大于5的

# 按员工姓名长度进行分组,查询每一组员工个数,筛选员工个数大于5的
/**
    按员工姓名长度进行分组
 */
select count(*),length(concat(last_name,first_name)) as len
from employees
group by len
having len > 5;

三、分组后排序

分组后的排序的字段通常也是having后的字段或条件

#求出每个部门的平均工资,对平均工资降序排序
select avg(salary),department_id
from employees
group by department_id
order by avg(salary) desc ;

四、测试

  1. 查询各 job_id 的员工工资的最大值,最小值,平均值,总和,并按 job_id 升序
select max(salary),min(salary) , job_id
from employees
group by job_id
order by job_id;
  1. 查询员工最高工资和最低工资的差距(DIFFERENCE)
select max(salary)-min(salary)
from employees;
  1. 查询各个管理者手下员工的最低工资,其中最低工资不能低于 6000,没有管理者的员工不计算在内
select min(salary),manager_id
from employees
where manager_id is not null
group by manager_id
having min(salary) > 5000;
  1. 查询所有部门的编号,员工数量和工资平均值,并按平均工资降序
select avg(salary), count(*) ,department_id
from employees
group by department_id
order by avg(salary) desc ;
  1. 查询具有各个 job_id 的员工人数
select count(*) ,job_id
from employees
group by job_id;