Kafka——架构介绍
- 一、Kafka基本架构介绍
- 1、生产者API
- 2、消费者API
- 3、StreamsAPI
- 4、ConnectAPI
- 二、Kafka架构内部细节剖析
- 三、Kafka主要组件说明
- 1. kafka当中的producer说明
- 2. kafka当中的topic说明
- 3. kafka当中的partition说明
- 4. kafka当中partition的副本数说明
- 5. kafka当中的segment说明
- 索引文件与数据文件的关系
- 6. kafka当中的partition的offset
- 7. kafka分区与消费组的关系
- 8. kafka当中的consumer
一、Kafka基本架构介绍
1、生产者API
允许应用程序发布记录流至一个或者多个kafka的主题(topics)。
2、消费者API
允许应用程序订阅一个或者多个主题,并处理这些主题接收到的记录流。
3、StreamsAPI
允许应用程序充当流处理器(stream processor),从一个或者多个主题获取输入流,并生产一个输出流到一个或 者多个主题,能够有效的变化输入流为输出流。
4、ConnectAPI
允许构建和运行可重用的生产者或者消费者,能够把kafka主题连接到现有的应用程序或数据系统。例如:一个连 接到关系数据库的连接器可能会获取每个表的变化。
二、Kafka架构内部细节剖析
说明:kafka支持消息持久化,消费端为拉模型来拉取数据,消费状态和订阅关系有客户端负责维护,消息消费完 后,不会立即删除,会保留历史消息。因此支持多订阅时,消息只会存储一份就可以了。
Broker:kafka集群中包含一个或者多个服务实例,这种服务实例被称为Broker。
Topic:每条发布到kafka集群的消息都有一个类别,这个类别就 叫做Topic 。
Partition:Partition是一个物理上的概念,每个Topic包含一个或者多个Partition 。
segment:一个partition当中存在多个segment文件段,每个segment分为两部分,.log文件和.index文件,其中.index文件是索引文件,主要用于快速查询.log文件当中数据的偏移量位置。
Producer:负责发布消息到kafka的Broker中。
Consumer:消息消费者,向kafka的broker中读取消息的客户端。
Consumer Group:每一个Consumer属于一个特定的Consumer Group(可以为每个Consumer指定 groupName)。
.log:存放数据文件。
.index:存放.log文件的索引数据。
三、Kafka主要组件说明
1. kafka当中的producer说明
producer主要是用于生产消息,是kafka当中的消息生产者,生产的消息通过topic进行归类,保存到kafka的broker里面去
2. kafka当中的topic说明
1、kafka将消息以topic为单位进行归类
2、topic特指kafka处理的消息源(feeds of messages)的不同分类。
3、topic是一种分类或者发布的一些列记录的名义上的名字。kafka主题始终是支持多用户订阅的;也就是说,一 个主题可以有零个,一个或者多个消费者订阅写入的数据。
4、在kafka集群中,可以有无数的主题。
5生产者和消费者消费数据一般以主题为单位。更细粒度可以到分区级别。
3. kafka当中的partition说明
kafka当中,topic是消息的归类,一个topic可以有多个分区,每个分区保存部分topic的数据,所有的partition当中的数据全部合并起来,就是一个topic当中的所有的数据,
一个broker服务下,是否可以创建多个分区?
可以的,broker数与分区数没有关系; 在kafka中,每一个分区会有一个编号:编号从0开始
每一个分区的数据是有序的
说明-数据是有序 如何保证一个主题下的数据是有序的?(生产是什么样的顺序,那么消费的时候也是什么样的顺序)
说明-数据是有序 如何保证一个主题下的数据是有序的?(生产是什么样的顺序,那么消费的时候也是什么样的顺序)
topic的Partition数量在创建topic时配置。
Partition数量决定了每个Consumer group中并发消费者的最大数量。
Consumer group A 有两个消费者来读取4个partition中数据;Consumer group B有四个消费者来读取4个 partition中的数据
4. kafka当中partition的副本数说明
kafka分区副本数(kafka Partition Replicas)
副本数(replication-factor)
副本数(replication-factor):控制消息保存在几个broker(服务器)上,一般情况下等于broker的个数
一个broker服务下,是否可以创建多个副本因子?
不可以;创建主题时,副本因子应该小于等于可用的broker数。 副本因子过程图
副本因子操作以分区为单位的。每个分区都有各自的主副本和从副本;
主副本叫做leader,从副本叫做 follower(在有多个副本的情况下,kafka会为同一个分区下的所有分区,设定角色关系:一个leader和N个 follower),处于同步状态的副本叫做in-sync-replicas(ISR);
follower通过拉的方式从leader同步数据。
消费 者和生产者都是从leader读写数据,不与follower交互。
副本因子的作用:让kafka读取数据和写入数据时的可靠性。
副本因子是包含本身,同一个副本因子不能放在同一个Broker中。
如果某一个分区有三个副本因子,就算其中一个挂掉,那么只会剩下的两个中,选择一个leader,但不会在其 他的broker中,另启动一个副本(因为在另一台启动的话,存在数据传递,只要在机器之间有数据传递,就 会长时间占用网络IO,kafka是一个高吞吐量的消息系统,这个情况不允许发生)所以不会在零个broker中启动。
如果所有的副本都挂了,生产者如果生产数据到指定分区的话,将写入不成功。
lsr表示:当前可用的副本
5. kafka当中的segment说明
一个partition当中由多个segment文件组成,每个segment文件,包含两部分,一个是.log文件,另外一个是.index文件,其中.log文件包含了我们发送的数据存储,.index文件,记录的是我们.log文件的数据索引值,以便于我们加快数据的查询速度
索引文件与数据文件的关系
既然它们是一一对应成对出现,必然有关系。索引文件中元数据指向对应数据文件中message的物理偏移地址
比如索引文件中3,497代表:数据文件中的第三个message,它的偏移地址为497。再来看数据文件中,Message 368772表示:在全局partiton中是第368772个message。
注:segment index file采取稀疏索引存储方式,它减少索引文件大小,通过map可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
6. kafka当中的partition的offset
任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),
offset是一个long类型数字,它唯一标识了一条消息,消费者通过(offset,partition,topic)跟踪记录。
7. kafka分区与消费组的关系
消费组: 由一个或者多个消费者组成,同一个组中的消费者对于同一条消息只消费一次。
某一个主题下的分区数,对于消费组来说,应该小于等于该主题下的分区数。如下所示:
如:某一个主题有4个分区,那么消费组中的消费者应该小于4,而且最好与分区数成整数倍
1 2 4
同一个分区下的数据,在同一时刻,不能同一个消费组的不同消费者消费
总结:分区数越多,同一时间可以有越多的消费者来进行消费,消费数据的速度就会越快,提高消费的性能
8. kafka当中的consumer
consumer是kafka当中的消费者,主要用于消费kafka当中的数据,任何一个消费者都必定需要属于某一个消费组当中,任意时刻,一个分区当中的数据,只能被kafka当中同一个消费组下面的一个线程消费