Kubernetes介绍
Kubernetes是Google开源的容器集群管理系统,是基于Docker构建一个容器的调度服务,提供资源调度、均衡容灾、服务注册、动态扩缩容等功能套件。 Kubernetes提供应用部署、维护、 扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用,其主要功能如下: 1) 使用Docker对应用程序包装(package)、实例化(instantiate)、运行(run)。 2) 将多台Docker主机抽象为一个资源,以集群的方式运行、管理跨机器的容器,包括任务调度、资源管理、弹性伸缩、滚动升级等功能。 3)使用编排系统(YAML File)快速构建容器集群,提供负载均衡,解决容器直接关联及通信问题 4) 解决Docker跨机器容器之间的通讯问题。 5)自动管理和修复容器,简单说,比如创建一个集群,里面有十个容器,如果某个容器异常关闭,那么,会尝试重启或重新分配容器,始终保证会有 十个容器在运行,反而杀死多余的。 Kubernetes的自我修复机制使得容器集群总是运行在用户期望的状态当前Kubernetes支持GCE、vShpere、CoreOS、OpenShift。
Kubernetes和Mesos的区别
1)Mesos是Apache下的开源分布式资源管理框架,它被称为是分布式系统的内核; Kubernetes是Google开源的容器集群管理系统,实现基于Docker构建容器,利用Kubernetes能很方面管理多台Docker主机中的容器。 2)Mesos负责管理集群管资源(动态运行时,某机器有额外的资源,通知master来分配); Kubernetes抽象出新的容器组合模型并且对其编排管理(把容器自由组合提供服务这事儿搞定了,从而微服务,serverless等才真 正的优雅地在开发和运维之间不吵架地被实现),而且kubernetes把以前运维的很多很难搞的东西都变得容易了。比如OpenStack, Kubernetes是把OpenStack里面的VM换成了容器,但是实现地更漂亮,更精简,更抽象和本质化,用起来也更容易。 3)Mesos相比Kubernetes发展的时间更久,总体情况更成熟,在生产环境有更多的使用经验,国外使用Mesos的公司有Twitter,Apple, Airbnb,Uber等,国内也有大批知名公司在使用Mesos,比如:小米、当当、豆瓣、去哪儿、携程、唯品会、知乎、新浪微博、爱奇艺、 七牛、唯品会、bilibili、中国联通、中国移动、中国电信、华为、数人云等等。中大型公司会更倾向于使用Mesos, 因为本身这些公司有一定的开发能力,Mesos提供了良好的API而且有非常多成熟的Framework跑在Mesos上,Mesos+Marathon+Zookeeper 正常情况可以满足绝大部分需求,只需要写JSON或者DSL定义好service/application就好,只有一些特殊情况才确实需要写自己的Framework。 而kubernetes(k8s)现在也正在慢慢成熟起来,它在生产环境显然还需要更多时间来验证。京东目前已经在kubernetes上跑15W+容器了。 Mesos现在越来越适应并且被添加上了很多Kubernete的概念同时支持了很多Kubernetes的API。因此如果你需要它们的话,它将是对你的 Kubernetes应用去获得更多能力的一个便捷方式(比如高可用的主干、更加高级的调度命令、去管控很大数目结点的能力),同时能够很好的 适用于产品级工作环境中(毕竟Kubernetes任然还是一个初始版本)。 4)如果你是一个集群世界的新手,Kubernetes是一个很棒的起点。它是最快的、最简单的、最轻量级的方法去摆脱束缚,同时开启面向集群开发的实践。 它提供了一个高水平的可移植方案,因为它是被一些不同的贡献者所支持的( 例如微软、IBM、Red Hat、CoreOs、MesoSphere、VMWare等等)。 如果你已经有已经存在的工作任务(Hadoop、Spark、Kafka等等),Mesos给你提供了一个可以让你将不同工作任务相互交错的框架,然后混合进一个 包含Kubernetes 应用的新的东西。 如果你还没有用Kubernetes 系列框架完成项目的能力,Mesos给了你一个减压阀。
Kubernetes结构图
kubernetes角色组成
1)Pod 在Kubernetes系统中,调度的最小颗粒不是单纯的容器,而是抽象成一个Pod,Pod是一个可以被创建、销毁、调度、管理的最小的部署单元。 比如一个或一组容器。Pod是kubernetes的最小操作单元,一个Pod可以由一个或多个容器组成;同一个Pod只能运行在同一个主机上,共享相 同的volumes、network、namespace; 2)ReplicationController(RC) RC用来管理Pod,一个RC可以由一个或多个Pod组成,在RC被创建后,系统会根据定义好的副本数来创建Pod数量。在运行过程中,如果Pod数量 小于定义的,就会重启停止的或重新分配Pod,反之则杀死多余的。当然,也可以动态伸缩运行的Pods规模或熟悉。RC通过label关联对应的Pods, 在滚动升级中,RC采用一个一个替换要更新的整个Pods中的Pod。 Replication Controller是Kubernetes系统中最有用的功能,实现复制多个Pod副本,往往一个应用需要多个Pod来支撑,并且可以保证其复制的 副本数,即使副本所调度分配的宿主机出现异常,通过Replication Controller可以保证在其它主宿机启用同等数量的Pod。Replication Controller 可以通过repcon模板来创建多个Pod副本,同样也可以直接复制已存在Pod,需要通过Label selector来关联。 3)Service Service定义了一个Pod逻辑集合的抽象资源,Pod集合中的容器提供相同的功能。集合根据定义的Label和selector完成,当创建一个Service后, 会分配一个Cluster IP,这个IP与定义的端口提供这个集合一个统一的访问接口,并且实现负载均衡。 Services是Kubernetes最外围的单元,通过虚拟一个访问IP及服务端口,可以访问我们定义好的Pod资源,目前的版本是通过iptables的nat转发来实现, 转发的目标端口为Kube_proxy生成的随机端口,目前只提供GOOGLE云上的访问调度,如GCE。 4)Label Label是用于区分Pod、Service、RC的key/value键值对;仅使用在Pod、Service、Replication Controller之间的关系识别,但对这些单元本身进行操 作时得使用name标签。Pod、Service、RC可以有多个label,但是每个label的key只能对应一个;主要是将Service的请求通过lable转发给后端提供服务的Pod集合; 说说个人一点看法,目前Kubernetes保持一周一小版本、一个月一大版本的节奏,迭代速度极快,同时也带来了不同版本操作方法的差异,另外官网文档更新速度 相对滞后及欠缺,给初学者带来一定挑战。在上游接入层官方侧重点还放在GCE(Google Compute Engine)的对接优化,针对个人私有云还未推出一套可行的接入 解决方案。在v0.5版本中才引用service代理转发的机制,且是通过iptables来实现,在高并发下性能令人担忧。但作者依然看好Kubernetes未来的发展,至少目前 还未看到另外一个成体系、具备良好生态圈的平台,相信在V1.0时就会具备生产环境的服务支撑能力。
kubernetes组件组成
1)kubectl 客户端命令行工具,将接受的命令格式化后发送给kube-apiserver,作为整个系统的操作入口。 2)kube-apiserver 作为整个系统的控制入口,以REST API服务提供接口。 3)kube-controller-manager 用来执行整个系统中的后台任务,包括节点状态状况、Pod个数、Pods和Service的关联等。 4)kube-scheduler 负责节点资源管理,接受来自kube-apiserver创建Pods任务,并分配到某个节点。 5)etcd 负责节点间的服务发现和配置共享。 6)kube-proxy 运行在每个计算节点上,负责Pod网络代理。定时从etcd获取到service信息来做相应的策略。 7)kubelet 运行在每个计算节点上,作为agent,接受分配该节点的Pods任务及管理容器,周期性获取容器状态,反馈给kube-apiserver。 8)DNS 一个可选的DNS服务,用于为每个Service对象创建DNS记录,这样所有的Pod就可以通过DNS访问服务了。
Kubelet
根据上图可知Kubelet是Kubernetes集群中每个Minion和Master API Server的连接点,Kubelet运行在每个Minion上,是Master API Server和Minion之间的桥梁, 接收Master API Server分配给它的commands和work,与持久性键值存储etcd、file、server和http进行交互,读取配置信息。Kubelet的主要工作是管理Pod和容 器的生命周期,其包括Docker Client、Root Directory、Pod Workers、Etcd Client、Cadvisor Client以及Health Checker组件,具体工作如下: 1) 通过Worker给Pod异步运行特定的Action。 2) 设置容器的环境变量。 3) 给容器绑定Volume。 4) 给容器绑定Port。 5) 根据指定的Pod运行一个单一容器。 6) 杀死容器。 7) 给指定的Pod创建network 容器。 8) 删除Pod的所有容器。 9) 同步Pod的状态。 10) 从Cadvisor获取container info、 pod info、root info、machine info。 11) 检测Pod的容器健康状态信息。 12) 在容器中运行命令
kubernetes基本部署步骤
1)minion节点安装docker
2)minion节点配置跨主机容器通信
3)master节点部署etcd、kube-apiserver、kube-controller-manager和kube-scheduler组件
4)minion节点部署kubelet、kube-proxy组件
注:推荐将etcd做成集群,所有节点都安装etcd。这里的使用master来搭建私有仓库供minion节点使用。
温馨提示:
如果minion主机没有安装docker,启动kubelet时会报如下错误:
Could not load kubeconfig file /var/lib/kubelet/kubeconfig: stat /var/lib/kubelet/kubeconfig: no such file or directory. Trying auth path instead.
Could not load kubernetes auth path /var/lib/kubelet/kubernetes_auth: stat /var/lib/kubelet/kubernetes_auth: no such file or directory. Continuing with defaults.
No cloud provider specified.
kubernetes集群环境部署过程记录
0)设置三台机器的主机名
主机名 IP 节点及功能 系统版本
registry 10.10.172.202 registry CentOS7.2
K8S-master 10.10.172.202 Master、etcd CentOS7.2
K8S-node-1 10.10.172.203 Node1 CentOS7.2
K8S-node-2 10.10.172.204 Node2 CentOS7.2
Registry上执行:
[root@localhost ~]# hostnamectl --static set-hostname registry
Master上执行:
[root@localhost ~]# hostnamectl --static set-hostname k8s-master
Node1上执行:
[root@localhost ~]# hostnamectl --static set-hostname k8s-node-1
Node2上执行:
[root@localhost ~]# hostnamectl --static set-hostname k8s-node-2
在三台机器上都要设置hosts,均执行如下命令:
[root@k8s-master ~]# vim /etc/hosts
10.10.172.201 registry
10.10.172.202 k8s-master
10.10.172.202 etcd
10.10.172.203 k8s-node-1
10.10.172.204 k8s-node-2
1)关闭三台机器上的防火墙和SElinux
[root@k8s-master ~]# systemctl disable firewalld.service
[root@k8s-master ~]# systemctl stop firewalld.service
注:建议安装iptable防火墙,yum install iptables-service -y;systemctl start iptables.service;systemctl enable iptables.service
[root@k8s-master ~]# sed -i "/SELINUX/s/enforcing/disabled/g" /etc/selinux/config
[root@k8s-master ~]# reboot
[root@k8s-master ~]# getenforce
Disabled
注:docker 1.13.1 需要关闭selinux或者升级内核,才可以启动docker。
启动报错提示:Error starting daemon: SELinux is not supported with the overlay2 graph driver on this kernel
2)docker私有仓库建立
环境说明:
我们选取10.10.172.201做私有仓库地址
yum install docker -y
1.启动docker仓库端口服务
docker run -d -p 5000:5000 --name=registry --privileged=true --restart=always -v /data/history:/data/registry registry
2.查看docker仓库端口服务
# curl -XGET http://10.10.172.201:5000/v2/_catalog
# curl -XGET http://10.10.172.201:5000/v2/image_name/tags/list
3.将自己的镜像加到docker仓库
1).加载到自己的私有仓库
docker pull busybox
docker tag busybox 10.10.172.201:5000/busybox
docker push 10.10.172.201:5000/busybox
docker push 上传镜像到本地私有仓库时报错提示:
The push refers to a repository [10.10.172.201:5000/busybox]
Get https://10.10.172.201:5000/v1/_ping: http: server gave HTTP response to HTTPS client
解决方法:
修改服务端docker配置文件/etc/sysconfig/docker添加如下代码,同时重启docker服务:
OPTIONS='--selinux-enabled --log-driver=journald --signature-verification=false --insecure-registry 10.10.172.201:5000'
ADD_REGISTRY='--add-registry 10.10.172.201:5000'
2).检查本地私有仓库是否成功
[root@k8s-master ~]# curl -XGET http://10.10.172.201:5000/v2/_catalog
{"repositories":["busybox"]}
[root@k8s-master ~]# curl -XGET http://10.10.172.201:5000/v2/busybox/tags/list
{"name":"busybox","tags":["latest"]}
4.docker客户端使用本地私有仓库:
修改配置文件/etc/sysconfig/docker,添加如下代码,同时重启docker服务:
OPTIONS='--selinux-enabled --log-driver=journald --signature-verification=false --insecure-registry 10.10.172.201:5000'
ADD_REGISTRY='--add-registry 10.10.172.201:5000'
或者:
修改配置文件/etc/docker/daemon.json,添加如下代码,同时重启docker服务:
{ "insecure-registries":["10.10.172.201:5000"] }
或者:
{ "insecure-registries":["10.10.172.201:5000"],
"registry-mirrors": ["http://df98fb04.m.daocloud.io"]}
至此,docker本地私有仓库部署完毕,可以向仓库中添加或者更新Docker镜像。
3)现在开始部署Master
1)先安装docker环境
[root@k8s-master ~]# yum install -y docker
配置Docker配置文件,使其允许从registry中拉取镜像
[root@k8s-master ~]# vim /etc/sysconfig/docker #添加下面一行内容
......
OPTIONS='--insecure-registry registry:5000'
[root@k8s-master ~]# systemctl start docker
2)安装etcd
k8s运行依赖etcd,需要先部署etcd,下面采用yum方式安装:
[root@k8s-master ~]# yum install etcd -y
yum安装的etcd默认配置文件在/etc/etcd/etcd.conf,编辑配置文件:
[root@k8s-master ~]# cp /etc/etcd/etcd.conf{,.bak}
[root@k8s-master ~]# cat /etc/etcd/etcd.conf
#[member]
ETCD_NAME=master #节点名称
ETCD_DATA_DIR="/var/lib/etcd/default.etcd" #数据存放位置
#ETCD_WAL_DIR=""
#ETCD_SNAPSHOT_COUNT="10000"
#ETCD_HEARTBEAT_INTERVAL="100"
#ETCD_ELECTION_TIMEOUT="1000"
#ETCD_LISTEN_PEER_URLS="http://0.0.0.0:2380"
ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:2379,http://0.0.0.0:4001" #监听客户端地址
#ETCD_MAX_SNAPSHOTS="5"
#ETCD_MAX_WALS="5"
#ETCD_CORS=""
#
#[cluster]
#ETCD_INITIAL_ADVERTISE_PEER_URLS="http://localhost:2380"
# if you use different ETCD_NAME (e.g. test), set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..."
#ETCD_INITIAL_CLUSTER="default=http://localhost:2380"
#ETCD_INITIAL_CLUSTER_STATE="new"
#ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_ADVERTISE_CLIENT_URLS="http://etcd:2379,http://etcd:4001" #通知客户端地址
#ETCD_DISCOVERY=""
#ETCD_DISCOVERY_SRV=""
#ETCD_DISCOVERY_FALLBACK="proxy"
#ETCD_DISCOVERY_PROXY=""
启动etcd并验证状态
[root@k8s-master ~]# systemctl start etcd;systemctl enable etcd
[root@k8s-master ~]# ps -ef|grep etcd
etcd 28145 1 1 14:38 ? 00:00:00 /usr/bin/etcd --name=master --data-dir=/var/lib/etcd/default.etcd --listen-client-urls=http://0.0.0.0:2379,http://0.0.0.0:4001
root 28185 24819 0 14:38 pts/1 00:00:00 grep --color=auto etcd
[root@k8s-master ~]# lsof -i:2379
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
etcd 28145 etcd 6u IPv6 1283822 0t0 TCP *:2379 (LISTEN)
etcd 28145 etcd 18u IPv6 1284133 0t0 TCP localhost:53203->localhost:2379 (ESTABLISHED)
........
[root@k8s-master ~]# etcdctl set testdir/testkey0 0
0
[root@k8s-master ~]# etcdctl get testdir/testkey0
0
[root@k8s-master ~]# etcdctl -C http://etcd:4001 cluster-health
member 8e9e05c52164694d is healthy: got healthy result from http://etcd:2379
cluster is healthy
[root@k8s-master ~]# etcdctl -C http://etcd:2379 cluster-health
member 8e9e05c52164694d is healthy: got healthy result from http://etcd:2379
cluster is healthy
[root@k8s-master ~]# etcdctl member list
8e9e05c52164694d: name=default peerURLs=http://localhost:2380 clientURLs=http://etcd:2379,http://etcd:4001 isLeader=true
3)安装kubernets
[root@k8s-master ~]# yum install kubernetes -y #其实只需安装kubernetes-master
配置并启动kubernetes
在kubernetes master上需要运行以下组件:Kubernets API Server、Kubernets Controller Manager、Kubernets Scheduler
[root@k8s-master ~]# cp /etc/kubernetes/apiserver{,.bak}
[root@k8s-master ~]# vim /etc/kubernetes/apiserver
###
# kubernetes system config
#
# The following values are used to configure the kube-apiserver
#
# The address on the local server to listen to.
KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0"
# The port on the local server to listen on.
KUBE_API_PORT="--port=8080"
# Port minions listen on
# KUBELET_PORT="--kubelet-port=10250"
# Comma separated list of nodes in the etcd cluster
KUBE_ETCD_SERVERS="--etcd-servers=http://etcd:2379"
# Address range to use for services
KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=192.168.21.0/24"
# default admission control policies
#KUBE_ADMISSION_CONTROL="--admission-control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ServiceAccount,ResourceQuota"
KUBE_ADMISSION_CONTROL="--admission-control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ResourceQuota"
# Add your own!
KUBE_API_ARGS=""
[root@k8s-master ~]# cp /etc/kubernetes/config{,.bak}
[root@k8s-master ~]# vim /etc/kubernetes/config
###
# kubernetes system config
#
# The following values are used to configure various aspects of all
# kubernetes services, including
#
# kube-apiserver.service
# kube-controller-manager.service
# kube-scheduler.service
# kubelet.service
# kube-proxy.service
# logging to stderr means we get it in the systemd journal
KUBE_LOGTOSTDERR="--logtostderr=true"
# journal message level, 0 is debug
KUBE_LOG_LEVEL="--v=0"
# Should this cluster be allowed to run privileged docker containers
KUBE_ALLOW_PRIV="--allow-privileged=false"
# How the controller-manager, scheduler, and proxy find the apiserver
KUBE_MASTER="--master=http://k8s-master:8080"
启动服务并设置开机自启动
[root@k8s-master ~]# systemctl enable kube-apiserver.service
[root@k8s-master ~]# systemctl start kube-apiserver.service
[root@k8s-master ~]# systemctl enable kube-controller-manager.service
[root@k8s-master ~]# systemctl start kube-controller-manager.service
[root@k8s-master ~]# systemctl enable kube-scheduler.service
[root@k8s-master ~]# systemctl start kube-scheduler.service
4)接着部署Node(在两台node节点机器上都要操作)
1)安装docker
[root@k8s-node-1 ~]# yum install -y docker
配置Docker配置文件,使其允许从registry中拉取镜像
[root@k8s-node-1 ~]# vim /etc/sysconfig/docker #添加下面一行内容
......
OPTIONS='--insecure-registry registry:5000'
[root@k8s-node-1 ~]# systemctl start docker;systemctl enable docker
2)安装kubernets
[root@k8s-node-1 ~]# yum install kubernetes -y #其实只需安装kubernetes-node即可
配置并启动kubernetes
在kubernetes master上需要运行以下组件:Kubelet、Kubernets Proxy
[root@k8s-node-1 ~]# cp /etc/kubernetes/config{,.bak}
[root@k8s-node-1 ~]# vim /etc/kubernetes/config
###
# kubernetes system config
#
# The following values are used to configure various aspects of all
# kubernetes services, including
#
# kube-apiserver.service
# kube-controller-manager.service
# kube-scheduler.service
# kubelet.service
# kube-proxy.service
# logging to stderr means we get it in the systemd journal
KUBE_LOGTOSTDERR="--logtostderr=true"
# journal message level, 0 is debug
KUBE_LOG_LEVEL="--v=0"
# Should this cluster be allowed to run privileged docker containers
KUBE_ALLOW_PRIV="--allow-privileged=false"
# How the controller-manager, scheduler, and proxy find the apiserver
KUBE_MASTER="--master=http://k8s-master:8080"
[root@k8s-node-1 ~]# cp /etc/kubernetes/kubelet{,.bak}
[root@k8s-node-1 ~]# vim /etc/kubernetes/kubelet
###
# kubernetes kubelet (minion) config
# The address for the info server to serve on (set to 0.0.0.0 or "" for all interfaces)
KUBELET_ADDRESS="--address=0.0.0.0"
# The port for the info server to serve on
# KUBELET_PORT="--port=10250"
# You may leave this blank to use the actual hostname
KUBELET_HOSTNAME="--hostname-override=k8s-node-1" #特别注意这个,在另一个node2节点上,要改为k8s-node-2
# location of the api-server
KUBELET_API_SERVER="--api-servers=http://k8s-master:8080"
# pod infrastructure container
KUBELET_POD_INFRA_CONTAINER="--pod-infra-container-image=registry.access.redhat.com/rhel7/pod-infrastructure:latest"
# Add your own!
KUBELET_ARGS=""
加速器配置(可选)
[root@k8s-node-1 ~]# cat /etc/docker/daemon.json
{"registry-mirrors": ["http://df98fb04.m.daocloud.io"]}
[root@k8s-node-1 ~]#
启动服务并设置开机自启动
[root@k8s-node-1 ~]# systemctl enable kubelet.service
[root@k8s-node-1 ~]# systemctl start kubelet.service
[root@k8s-node-1 ~]# systemctl enable kube-proxy.service
[root@k8s-node-1 ~]# systemctl start kube-proxy.service
查看状态
[root@k8s-master ~]# kubectl -s http://k8s-master:8080 get node
NAME STATUS AGE
k8s-node-1 Ready 29s
k8s-node-2 Ready 28s
[root@k8s-master ~]# kubectl get nodes
NAME STATUS AGE
k8s-node-1 Ready 44s
k8s-node-2 Ready 43s
kubernetes常用命令
查看node主机
[root@k8s-master ~]# kubectl get node //有的环境是用monion,那么查看命令就是"kubectl get minions"
查看pods清单
[root@k8s-master ~]# kubectl get pods
查看service清单
[root@k8s-master ~]# kubectl get services //或者使用命令"kubectl get services -o json"
查看replicationControllers清单
[root@k8s-master ~]# kubectl get replicationControllers
删除所有pods(同理将下面命令中的pods换成services或replicationControllers,就是删除所有的services或replicationContronllers)
[root@k8s-master ~]# for i in `kubectl get pod|tail -n +2|awk '{print $1}'`; do kubectl delete pod $i; done
--------------------------------------------------------------------------
除了上面那种查看方式,还可以通过Server api for REST方式(这个及时性更高)
查看kubernetes版本
[root@k8s-master ~]# curl -s -L http://10.10.172.202:8080/api/v1beta1/version | python -mjson.tool
查看pods清单
[root@k8s-master ~]# curl -s -L http://10.10.172.202:8080/api/v1beta1/pods | python -mjson.tool
查看replicationControllers清单
[root@k8s-master ~]# curl -s -L http://10.10.172.202:8080/api/v1beta1/replicationControllers | python -mjson.tool
查查看node主机(或者是minion主机,将下面命令中的node改成minion)
[root@k8s-master ~]# curl -s -L http://10.10.172.202:8080/api/v1beta1/node | python -m json.tool
查看service清单
[root@k8s-master ~]# curl -s -L http://10.10.172.202:8080/api/v1beta1/services | python -m json.tool
温馨提示:
在新版Kubernetes中,所有的操作命令都整合至kubectl,包括kubecfg、kubectl.sh、kubecfg.sh等
5)创建覆盖网络——Flannel
1)安装Flannel(在master、node上均执行如下命令,进行安装)
[root@k8s-master ~]# yum install flannel -y #etcd节点和node节点都需要安装flannel
2)配置Flannel(在master、node上均编辑/etc/sysconfig/flanneld)
[root@k8s-master ~]# cp /etc/sysconfig/flanneld{,.bak}
[root@k8s-master ~]# vim /etc/sysconfig/flanneld
# Flanneld configuration options
# etcd url location. Point this to the server where etcd runs
FLANNEL_ETCD_ENDPOINTS="http://etcd:2379"
# etcd config key. This is the configuration key that flannel queries
# For address range assignment
FLANNEL_ETCD_PREFIX="/atomic.io/network"
# Any additional options that you want to pass
#FLANNEL_OPTIONS=""
3)配置etcd中关于flannel的key(这个只在master上操作)
Flannel使用Etcd进行配置,来保证多个Flannel实例之间的配置一致性,所以需要在etcd上进行如下配置:('/atomic.io/network/config'这个key与上文/etc/sysconfig/flannel中的配置项FLANNEL_ETCD_PREFIX是相对应的,错误的话启动就会出错)
[root@k8s-master ~]# etcdctl rm /atomic.io/network/ --recursive
[root@k8s-master ~]# etcdctl mk /atomic.io/network/config '{ "Network": "10.10.0.0/16" }'
{ "Network": "10.10.0.0/16" }
注:atomic.io可以更换为coreos.com
查看etcd配置中心网段
etcdctl ls /atomic.io/network/subnets
4)启动Flannel
启动Flannel之后,需要依次重启docker、kubernete。
在master执行:
[root@k8s-master ~]# systemctl enable flanneld.service
[root@k8s-master ~]# systemctl start flanneld.service
[root@k8s-master ~]# service docker restart
[root@k8s-master ~]# systemctl restart kube-apiserver.service
[root@k8s-master ~]# systemctl restart kube-controller-manager.service
[root@k8s-master ~]# systemctl restart kube-scheduler.service
在node上执行:
[root@k8s-node-1 ~]# systemctl enable flanneld.service
[root@k8s-node-1 ~]# systemctl start flanneld.service
[root@k8s-node-1 ~]# service docker restart
[root@k8s-node-1 ~]# systemctl restart kubelet.service
[root@k8s-node-1 ~]# systemctl restart kube-proxy.service
然后通过ifconfig命令查看maste和node节点,发现docker0网桥网络的ip已经是上面指定的10.10.0.0网段了。并且在master和node节点上创建的容器间都是可以相互通信的,能相互ping通!
在master上执行:
[root@k8s-master ~]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 10.10.34.1 netmask 255.255.255.0 broadcast 0.0.0.0
ether 02:42:e1:c2:b5:88 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.10.172.202 netmask 255.255.255.0 broadcast 10.10.172.255
inet6 fe80::250:56ff:fe86:6833 prefixlen 64 scopeid 0x20<link>
ether 00:50:56:86:68:33 txqueuelen 1000 (Ethernet)
RX packets 87982 bytes 126277968 (120.4 MiB)
RX errors 0 dropped 40 overruns 0 frame 0
TX packets 47274 bytes 6240061 (5.9 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
flannel0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1472
inet 10.10.34.0 netmask 255.255.0.0 destination 10.10.34.0
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 0 (Local Loopback)
RX packets 91755 bytes 38359378 (36.5 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 91755 bytes 38359378 (36.5 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
[root@k8s-master ~]#
在node上执行
[root@k8s-node-1 ~]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 10.10.66.1 netmask 255.255.255.0 broadcast 0.0.0.0
ether 02:42:2c:1d:19:14 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.10.172.203 netmask 255.255.255.0 broadcast 10.10.172.255
inet6 fe80::250:56ff:fe86:3ed8 prefixlen 64 scopeid 0x20<link>
ether 00:50:56:86:3e:d8 txqueuelen 1000 (Ethernet)
RX packets 69554 bytes 116340717 (110.9 MiB)
RX errors 0 dropped 34 overruns 0 frame 0
TX packets 35925 bytes 2949594 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
flannel0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1472
inet 10.10.66.0 netmask 255.255.0.0 destination 10.10.66.0
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 0 (Local Loopback)
RX packets 24 bytes 1856 (1.8 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 24 bytes 1856 (1.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
[root@k8s-node-1 ~]#
[root@k8s-node-2 ~]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 10.10.59.1 netmask 255.255.255.0 broadcast 0.0.0.0
ether 02:42:08:8b:65:48 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.10.172.204 netmask 255.255.255.0 broadcast 10.10.172.255
inet6 fe80::250:56ff:fe86:22d8 prefixlen 64 scopeid 0x20<link>
ether 00:50:56:86:22:d8 txqueuelen 1000 (Ethernet)
RX packets 69381 bytes 116036521 (110.6 MiB)
RX errors 0 dropped 27 overruns 0 frame 0
TX packets 35545 bytes 2943130 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
flannel0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 1472
inet 10.10.59.0 netmask 255.255.0.0 destination 10.10.59.0
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 0 (Local Loopback)
RX packets 24 bytes 1856 (1.8 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 24 bytes 1856 (1.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
[root@k8s-node-2 ~]#
6)部署nginx pod 和 复制 “器”
以下面的图来安装一个简单的静态内容的nginx应用:
用复制“器”启动一个2个备份的nginx Pod,然后在前面挂Service,一个service只能被集群内部访问,一个能被集群外的节点访问。下面所有的命令都是在master管理节点上运行的。
1)首先部署nginx pod 和复制“器”---------------------------------------------------------------------
[root@k8s-master ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/nginx latest 3448f27c273f 8 days ago 109.4 MB
通过下面命令发现apiVersion版本是v1
[root@k8s-master ~]# curl -s -L http://10.10.172.202:8080/api/v1beta1/version | python -mjson.tool
{
"apiVersion": "v1",
.......
}
开始创建pod单元
[root@k8s-master ~]# mkdir -p /data/kubermange && cd /data/kubermange
[root@k8s-master kubermange]# vim nginx-rc.yaml
apiVersion: v1
kind: ReplicationController
metadata:
name: nginx-controller
spec:
replicas: 2 #即2个备份
selector:
name: nginx
template:
metadata:
labels:
name: nginx
spec:
containers:
- name: nginx
image: docker.io/nginx
ports:
- containerPort: 80
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f nginx-rc.yaml
replicationcontroller "nginx-controller" created
由于kubernetes要去gcr.io下载gcr.io/google_containers/pause镜像,然后下载nginx镜像,所以所创建的Pod需要等待一些时间才能处于running状态。
然后查看pods清单
[root@k8s-master kubermange]# kubectl -s http://k8s-master:8080 get pods
NAME READY STATUS RESTARTS AGE
nginx-controller-3n1ct 0/1 ContainerCreating 0 8s
nginx-controller-4bnfn 0/1 ContainerCreating 0 8s
可以使用describe 命令查看pod所分到的节点:
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 describe pod nginx-controller-3n1ct |more
Name: nginx-controller-3n1ct
Namespace: default
Node: k8s-node-1/10.10.172.203
.......
同理,查看另一个pod
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 describe pod nginx-controller-4bnfn |more
Name: nginx-controller-4bnfn
Namespace: default
Node: k8s-node-2/10.10.172.204
.......
由上可以看出,这个复制“器”启动了两个Pod,分别运行在10.10.172.203和10.10.172.204这两个节点上了。到这两个节点上查看,发现已经有nginx应用容器创建了。
提醒:最好事先在node节点上执行命令yum install *rhsm* -y(yum install python-rhsm python-rhsm-certificates [python-dateutil] -y);然后执行命令docker pull registry.access.redhat.com/rhel7/pod-infrastructure:latest;最后执行命令kubectl -s http://10.10.172.202:8080 create -f nginx-rc.yaml来创建pod单元。
[root@k8s-node-1 ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/nginx latest 3f8a4339aadd 12 days ago 108.5 MB
registry.access.redhat.com/rhel7/pod-infrastructure latest 99965fb98423 12 weeks ago 208.6 MB
[root@k8s-node-1 ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
e60877d9d5e4 docker.io/nginx "nginx -g 'daemon off" 10 minutes ago Up 10 minutes k8s_nginx.3d610115_nginx-controller-b05d6_default_aadfd74a-f43a-11e7-a1bf-005056866833_6de59c2d
cba61f9bda3b registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" 11 minutes ago Up 11 minutes k8s_POD.a8590b41_nginx-controller-b05d6_default_aadfd74a-f43a-11e7-a1bf-005056866833_e60a56ca
[root@k8s-node-1 ~]# docker inspect e60877d9d5e4 |grep -i ip
"IpcMode": "container:cba61f9bda3b9e68859098f16ae4c77c09189ace3b8dc4656b797f5dd7dcb615",
"LinkLocalIPv6Address": "",
"LinkLocalIPv6PrefixLen": 0,
"SecondaryIPAddresses": null,
"SecondaryIPv6Addresses": null,
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"IPAddress": "",
"IPPrefixLen": 0,
"IPv6Gateway": "",
[root@k8s-node-1 ~]#
[root@k8s-node-2 ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/nginx latest 3f8a4339aadd 12 days ago 108.5 MB
registry.access.redhat.com/rhel7/pod-infrastructure latest 99965fb98423 12 weeks ago 208.6 MB
[root@k8s-node-2 ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
491df793c5d8 docker.io/nginx "nginx -g 'daemon off" 12 minutes ago Up 12 minutes k8s_nginx.3d610115_nginx-controller-8ddph_default_aadfcd91-f43a-11e7-a1bf-005056866833_785ceefb
647bf56d61b8 registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" 12 minutes ago Up 12 minutes k8s_POD.a8590b41_nginx-controller-8ddph_default_aadfcd91-f43a-11e7-a1bf-005056866833_145d0863
[root@k8s-node-2 ~]# docker inspect 491df793c5d8 |grep -i ip
"IpcMode": "container:647bf56d61b8b46a01dbf422ab273a11aa36c6b38bce594d73bec1ac42068829",
"LinkLocalIPv6Address": "",
"LinkLocalIPv6PrefixLen": 0,
"SecondaryIPAddresses": null,
"SecondaryIPv6Addresses": null,
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"IPAddress": "",
"IPPrefixLen": 0,
"IPv6Gateway": "",
[root@k8s-node-2 ~]#
2)部署节点内部可访问的nginx service------------------------------------------------------------------------
Service的type有ClusterIP和NodePort之分,缺省是ClusterIP,这种类型的Service只能在集群内部访问。配置文件如下:
[root@k8s-master kubermange]# vim nginx-service-clusterip.yaml
apiVersion: v1
kind: Service
metadata:
name: nginx-service-clusterip
spec:
ports:
- port: 8001
targetPort: 80
protocol: TCP
selector:
name: nginx
然后执行下面的命令创建service:
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f nginx-service-clusterip.yaml
或者
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f ./nginx-service-clusterip.yaml
service "nginx-service-clusterip" created
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 get service
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 192.168.21.1 <none> 443/TCP 2d
nginx-service-clusterip 192.168.21.174 <none> 8001/TCP 12s
验证service的可访问性(访问节点):
上面的输出告诉我们这个Service的Cluster IP是192.168.21.174,端口是8001。那么我们就来验证这个PortalNet IP的工作情况:
ssh登录到节点机上验证(可以提前做ssh无密码登录的信任关系,当然也可以不做,这样验证时要手动输入登录密码)
[root@k8s-master kubermange]# ssh 10.10.172.203 curl -s 192.168.21.174:8001 //或者直接到节点机上执行"curl -s 192.168.21.174:8001"
The authenticity of host '10.10.172.203 (10.10.172.203)' can't be established.
ECDSA key fingerprint is 66:41:1f:d2:77:b6:eb:ce:3f:a1:68:47:7e:14:ee:cb.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.10.172.203' (ECDSA) to the list of known hosts.
root@10.10.172.203's password:
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
[root@k8s-master kubermange]#
同理验证到另外一个节点机上的service的可访问性也是ok的
[root@k8s-master kubermange]# ssh 10.10.172.204 curl -s 192.168.21.174:8001
由此可见,从前面部署×××的部分可以知道nginx Pod运行在10.10.172.203和10.10.172.204这两个节点上。
从这两个节点上访问我们的服务来体现Service Cluster IP在所有集群节点的可到达性。
3)部署外部可访问的nginx service-------------------------------------------------------------------
下面我们创建NodePort类型的Service,这种类型的Service在集群外部是可以访问。下表是本文用的配置文件:
[root@k8s-master kubermange]# vim nginx-service-nodeport.yaml
apiVersion: v1
kind: Service
metadata:
name: nginx-service-nodeport
spec:
ports:
- port: 8000
targetPort: 80
protocol: TCP
type: NodePort
selector:
name: nginx
执行下面的命令创建service:
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f ./nginx-service-nodeport.yaml
service "nginx-service-nodeport" created
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 get service
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 192.168.21.1 <none> 443/TCP 2d
nginx-service-clusterip 192.168.21.174 <none> 8001/TCP 27m
nginx-service-nodeport 192.168.21.140 <nodes> 8000:31099/TCP 13s
使用下面的命令获得这个service的节点级别的端口:
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 describe service nginx-service-nodeport 2>/dev/null | grep NodePort
Type: NodePort
NodePort: <unset> 31099/TCP
验证service的可访问性(访问节点):
上面的输出告诉我们这个Service的节点级别端口是31099。下面我们验证这个Service的工作情况:
[root@k8s-master kubermange]# curl 10.10.172.203:31099
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
[root@k8s-master kubermange]#
同理验证到另外一个节点机上的service的可访问性也是ok的
[root@k8s-master kubermange]# curl 10.10.172.204:31099
----------------------------------------------------------
登录另外两个节点机上,发现已经创建了nginx应用容器
[root@k8s-node-1 ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
e60877d9d5e4 docker.io/nginx "nginx -g 'daemon off" About an hour ago Up About an hour k8s_nginx.3d610115_nginx-controller-b05d6_default_aadfd74a-f43a-11e7-a1bf-005056866833_6de59c2d
cba61f9bda3b registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" About an hour ago Up About an hour k8s_POD.a8590b41_nginx-controller-b05d6_default_aadfd74a-f43a-11e7-a1bf-005056866833_e60a56ca
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
491df793c5d8 docker.io/nginx "nginx -g 'daemon off" About an hour ago Up About an hour k8s_nginx.3d610115_nginx-controller-8ddph_default_aadfcd91-f43a-11e7-a1bf-005056866833_785ceefb
647bf56d61b8 registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" About an hour ago Up About an hour k8s_POD.a8590b41_nginx-controller-8ddph_default_aadfcd91-f43a-11e7-a1bf-005056866833_145d0863
谷歌浏览器访问测试:
--------------------------------------------------------------------------------------------------------------
1)可以扩容nginx应用容器,依次添加对应的应用容器的pod、service-clusterip、service-nodeport的yaml文件即可。
注意yaml文件中的name名。
2)当然也可以添加其他应用容器,比如tomcat,也是依次创建pod、service-clusterip、service-nodeport的yaml文件。
注意yaml文件中的name名和port端口不要重复
3)后面应用容器的集群环境完成后(外部可访问的端口是固定的),可以考虑做下master控制机的集群环境(即做etcd集群)。
可以在控制节点做负载均衡,还可以通过keepalived做高可用。
---------------------------------------------------------
下面是tomcat应用容器创建实例中的3个yaml文件
[root@k8s-master kubermange]# cat tomcat-rc.yaml
apiVersion: v1
kind: ReplicationController
metadata:
name: tomcat-controller
spec:
replicas: 2
selector:
name: tomcat
template:
metadata:
labels:
name: tomcat
spec:
containers:
- name: tomcat
image: docker.io/tomcat
ports:
- containerPort: 8080
[root@k8s-master kubermange]# cat tomcat-service-clusterip.yaml
apiVersion: v1
kind: Service
metadata:
name: tomcat-service-clusterip
spec:
ports:
- port: 8801
targetPort: 8080
protocol: TCP
selector:
name: tomcat
[root@k8s-master kubermange]# cat tomcat-service-nodeport.yaml
apiVersion: v1
kind: Service
metadata:
name: tomcat-service-nodeport
spec:
ports:
- port: 8880
targetPort: 8080
protocol: TCP
type: NodePort
selector:
name: tomcat
查看外部可访问的tomcat service的端口
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 describe service tomcat-service-nodeport 2>/dev/null | grep NodePort
Type: NodePort
NodePort: <unset> 32295/TCP
操作步骤如下:
1)首先部署tomcat pod 和 复制“器”
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f tomcat-rc.yaml
[root@k8s-master kubermange]# kubectl -s http://k8s-master:8080 get pods
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 describe pod nginx-controller-* |more
2)部署节点内部可访问的tomcat service
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f tomcat-service-clusterip.yaml
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 get service
3)部署外部可访问的tomcat service
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 create -f ./tomcat-service-nodeport.yaml
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 get service
[root@k8s-master kubermange]# kubectl -s http://10.10.172.202:8080 describe service tomcat-service-nodeport 2>/dev/null | grep NodePort
谷歌浏览器访问测试:
到此为止,我们在每个节点上分别部署了nginx和tomcat容器。
总结:只需要node节点安装所有镜像即可,master节点不承担虚拟机docker安装可选。
[root@k8s-master ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/nginx latest 3f8a4339aadd 12 days ago 108.5 MB
[root@k8s-master ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
[root@k8s-master ~]#
[root@k8s-node-1 ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/nginx latest 3f8a4339aadd 12 days ago 108.5 MB
docker.io/tomcat latest 3dcfe809147d 3 weeks ago 557.4 MB
registry.access.redhat.com/rhel7/pod-infrastructure latest 99965fb98423 12 weeks ago 208.6 MB
[root@k8s-node-1 ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a30873206f1a docker.io/tomcat "catalina.sh run" 23 minutes ago Up 23 minutes k8s_tomcat.cdbc0245_tomcat-controller-9dm45_default_07397545-f448-11e7-a1bf-005056866833_d753af9d
967e614e667b registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" 25 minutes ago Up 25 minutes k8s_POD.24f70ba9_tomcat-controller-9dm45_default_07397545-f448-11e7-a1bf-005056866833_46708437
e60877d9d5e4 docker.io/nginx "nginx -g 'daemon off" 2 hours ago Up 2 hours k8s_nginx.3d610115_nginx-controller-b05d6_default_aadfd74a-f43a-11e7-a1bf-005056866833_6de59c2d
cba61f9bda3b registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" 2 hours ago Up 2 hours k8s_POD.a8590b41_nginx-controller-b05d6_default_aadfd74a-f43a-11e7-a1bf-005056866833_e60a56ca
[root@k8s-node-1 ~]#
[root@k8s-node-2 ~]# docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/nginx latest 3f8a4339aadd 12 days ago 108.5 MB
docker.io/tomcat latest 3dcfe809147d 3 weeks ago 557.4 MB
registry.access.redhat.com/rhel7/pod-infrastructure latest 99965fb98423 12 weeks ago 208.6 MB
[root@k8s-node-2 ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
18b91f21a691 docker.io/tomcat "catalina.sh run" 24 minutes ago Up 24 minutes k8s_tomcat.cdbc0245_tomcat-controller-2b17b_default_07395f07-f448-11e7-a1bf-005056866833_de861f22
5bfe2ec09a0a registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" 25 minutes ago Up 25 minutes k8s_POD.24f70ba9_tomcat-controller-2b17b_default_07395f07-f448-11e7-a1bf-005056866833_69dd72ef
491df793c5d8 docker.io/nginx "nginx -g 'daemon off" 2 hours ago Up 2 hours k8s_nginx.3d610115_nginx-controller-8ddph_default_aadfcd91-f43a-11e7-a1bf-005056866833_785ceefb
647bf56d61b8 registry.access.redhat.com/rhel7/pod-infrastructure:latest "/usr/bin/pod" 2 hours ago Up 2 hours k8s_POD.a8590b41_nginx-controller-8ddph_default_aadfcd91-f43a-11e7-a1bf-005056866833_145d0863
[root@k8s-node-2 ~]#
转载于:https://blog.51cto.com/dengaosky/2057388