你有没有经常好奇一些音乐软件的频谱特效是怎么做的,为什么做的这么好看?有没有想试试自己提取音乐频谱并可视化展现出来?今天,咱就结合上次的音乐剪辑操作:
Python 剪辑音乐就是这么简单
来简单粗暴地可视化下面这首歌曲的频谱!
1.准备
开始之前,你要确保Python和pip已经成功安装在电脑上噢,如果没有,请 进行安装。
Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。
当然,我更推荐大家用VSCode编辑器,把本文代码Copy下来,在编辑器下方的终端装依赖模块
在终端输入以下命令安装我们所需要的依赖模块:
pip install pydub
pip install librosa
看到 Successfully installed xxx 则说明安装成功。
2.频谱展示
使用librosa和matplot,我们可以用10行代码完整地展示整个频谱:
import matplotlib.pyplot as plt
import librosa.display
# 音乐文件载入
audio_path = 'Fenn.mp3'
music, sr = librosa.load(audio_path)
# 宽高比为14:5的图
plt.figure(figsize=(14,5))
librosa.display.waveplot(music, sr=sr)
# 显示图
plt.show()
不过,这样的频谱是整段音乐的,看起来非常难看,接下来我们使用 pydub 切割频谱,以获得更佳的效果。我们细分到0到1秒的区段来查看频谱:
import matplotlib.pyplot as plt
import librosa.display
import numpy as np
from pydub import AudioSegment
# 1秒=1000亳秒
SECOND = 1000
#音乐文件
AUDIO_PATH = 'Fenn.mp3'
def split_music(begin, end, filepath):
# 导儿音乐
song = AudioSegment.from_mp3(filepath)
# 取begin秒至ijend秒间的片段
song = song[begin*SECOND: end*SECOND]
# 存储为临时文件做备份
temp_path = 'backup/'+filepath
song.export(temp_path)
return temp_path
music, sr = librosa.load(split_music(0, 1, AUDIO_PATH))
#宽高比为14:5的图
plt.figure(figsize=(14, 5))
librosa.display.waveplot(music, sr=sr)
plt.show()
这下细是细了,但是还是太复杂了,其实我们做频谱的展示,或许只需要正值即可:
然后我们还可以进一步放大,比如说0.9秒到1秒之间的频谱:
# 公众号:Python 实用宝典
n0 = 9000
n1 = 10000
music = np.array([mic for mic in music if mic > 0])
plt.figure(figsize=(14, 5))
pit.plot(music[n0:n1])
plt.grid()
#显示图
plt.show()
这样好看许多,不过如果要达成QQ音乐那种效果,还是需要进行大量改造。
比如用精美的图像元素来填充替代、然后零值如何处理?如何让频谱更加平稳?此外,我们是静态的图像,还需要根据事件动态地延续波段。
用于生产的代码肯定比我们这简易的代码更加复杂,而且也不应该是暴力去除负值绘制图像。这些有兴趣的读者可以自行研究啦。