目录

1 前言

2 工具介绍

1.1 界面

 3 测试搜索倒锤头形态


1 前言

本来想研究金融,可是看到代码就烦,难道还要特意去学习python编程?那样岂不浪费好多发cai的时间?估计很多股友跟我的经历很相似。想从网上找个好的python工具,但是在网上找来找去都没找到特别中意的,全都是一堆代码,没法直接拿来主义。没办法还是边学习编程边炒gu养家吧。

2 工具介绍

这个工具的特点是,一是不用安装,直接运行;二是后台集成了python,功能强大;三是扩展性强,后面需要什么功能模块直接安装就行;四是不用敲代码,一行代码都不用敲,点几下鼠标就出结果了;五是后面会不断扩充功能,因为我要用它炒gu挣钱养家糊口,功能不强大不行;六是增加了功能我会马上发布新程序来。股友们拿来主义随便用;七是。。。。。。

1.1 界面

刚开始界面有点简陋啊,将就吧。

python talib python talib形态搜索_ci

python talib python talib形态搜索_ci_02

 

python talib python talib形态搜索_可视化_03

 3 测试搜索倒锤头形态

选中一个已经导出的代码,然后点击“搜:倒锤头”,几秒钟后浏览器显示结果。下面的滑块可以左右平移、放大缩小。

 

python talib python talib形态搜索_选股_04

记录一下实际使用的python代码:

from typing import List, Union
import talib
from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid
import os
import pandas as pd

'''
def net_split_data(data):
    category_data = []
    values = []
    volumes = []

    for i, tick in enumerate(data):
        category_data.append(tick[0])
        values.append(tick)
        volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])
    return {"categoryData": category_data, "values": values, "volumes": volumes}


def net_get_data():
    response = requests.get(
        url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json"
    )
    json_response = response.json()
    # 解析数据
    return net_split_data(data=json_response)
'''


def split_data(data):
    category_data = []
    values = []
    volumes = []
    # flags = []

    for i, tick in enumerate(data.values.tolist()):
        category_data.append(tick[0])
        values.append(tick)
        volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])
        # flags.append([i, 0])
        
        
    open_p = pd.DataFrame(values)[1]
    close_p = pd.DataFrame(values)[2]
    low_p = pd.DataFrame(values)[3]
    high_p = pd.DataFrame(values)[4]

    array_cdl2c = talib.CDLINVERTEDHAMMER(open_p, high_p, low_p, close_p) # 倒锤头
    # l_array_cdl2c = array_cdl2c.values.tolist()
    
    # 由于不知道如何在k线图中叠加标记,使用这种变通方法,即替换成交量图中
    # 的成交量为乌鸦标记
    # 即:用 array_cdl2c 的值替换 df_volumes 中的成交量
    # 列表转化为DataFrame方便列操作
    df_volumes = pd.DataFrame(volumes)
    df_volumes[1] = array_cdl2c
    df_volumes[2] = 1 # 2只乌鸦标志颜色统一设置为绿色
    
    volumes = df_volumes.values.tolist()
        
    return {"categoryData": category_data, "values": values, "volumes": volumes}


def get_data(code):
    # df_tdx = pd.read_feather(r'./dataout/tdx/'+code+r'.day.feather')
    # df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')
    # df_tdx_b=df_tdx.truncate(before=start_date, after = end_date)
    # df_tdx_b['Openinterest']=0
    # df_tdx_b.rename(columns={'vol':'volume'}, inplace = True)
    # df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]
    # return split_data(data=df_tdx_b)
    
    df_tdx = pd.read_feather(r'./data/tdx/'+code+r'.day.feather')
    df_tdx.drop('Amout', axis=1, inplace=True)
    df_tdx.Date=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')
    df_tdx.Date=df_tdx.Date.map(lambda x:x.strftime('%Y-%m-%d'))
    # df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')
    # 调整列顺序
    df_tdx = df_tdx.loc[:,['Date', 'Open', 'Close', 'Low', 'High', 'Volume']]
    
    # df_tdx_b=df_tdx.truncate(before=start, after = end)
    # df_tdx_b['Openinterest']=0
    # df_tdx.rename(columns={'vol':'Volume'}, inplace = True)
    # df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]
    return split_data(data=df_tdx)




def calculate_ma(day_count: int, data):
    result: List[Union[float, str]] = []
    for i in range(len(data["values"])):
        if i < day_count:
            result.append("-")
            continue
        sum_total = 0.0
        for j in range(day_count):
            sum_total += float(data["values"][i - j][1])
        result.append(abs(float("%.3f" % (sum_total / day_count))))
    return result


def draw_charts():
    kline_data = [data[1:-1] for data in chart_data["values"]]
    kline = (
        Kline()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="stock index",
            y_axis=kline_data,
            itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),
        )
        .set_global_opts(
            legend_opts=opts.LegendOpts(
                is_show=False, pos_bottom=10, pos_left="center"
            ),
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=False,
                    type_="inside",
                    xaxis_index=[0, 1],
                    range_start=98,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=True,
                    xaxis_index=[0, 1],
                    type_="slider",
                    pos_top="85%",
                    range_start=98,
                    range_end=100,
                ),
            ],
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                splitarea_opts=opts.SplitAreaOpts(
                    is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                ),
            ),
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                dimension=2,
                series_index=5,
                is_piecewise=True,
                pieces=[
                    {"value": 1, "color": "#00da3c"},
                    {"value": -1, "color": "#ec0000"},
                ],
            ),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{"xAxisIndex": "all"}],
                label=opts.LabelOpts(background_color="#777"),
            ),
            brush_opts=opts.BrushOpts(
                x_axis_index="all",
                brush_link="all",
                out_of_brush={"colorAlpha": 0.1},
                brush_type="lineX",
            ),
        )
    )

    line = (
        Line()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="MA5",
            y_axis=calculate_ma(day_count=5, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA10",
            y_axis=calculate_ma(day_count=10, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA20",
            y_axis=calculate_ma(day_count=20, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA30",
            y_axis=calculate_ma(day_count=30, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))
    )

    bar = (
        Bar()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="Volume",
            y_axis=chart_data["volumes"],
            xaxis_index=1,
            yaxis_index=1,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                is_scale=True,
                grid_index=1,
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                is_scale=True,
                split_number=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
                axisline_opts=opts.AxisLineOpts(is_show=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    # Kline And Line
    overlap_kline_line = kline.overlap(line)

    # Grid Overlap + Bar
    grid_chart = Grid(
        init_opts=opts.InitOpts(
            width="1400px",
            height="800px",
            animation_opts=opts.AnimationOpts(animation=False),
        )
    )
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"),
    )
    grid_chart.add(
        bar,
        grid_opts=opts.GridOpts(
            pos_left="10%", pos_right="8%", pos_top="63%", height="16%"
        ),
    )

    grid_chart.render("render.html")
    # 打开网页
    os.system("render.html")


if __name__ == "__main__":
    
    
    '''
    df_tdx = pd.read_feather(r'./dataout/tdx/bj871396.day.feather')
    df_tdx.drop('Amout', axis=1, inplace=True)
    df_tdx.Date=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')
    df_tdx.Date=df_tdx.Date.map(lambda x:x.strftime('%Y-%m-%d'))
    # df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')
    # df_tdx.Date = df_tdx.astype({'Date':'str'})
    # df_tdx.Date = df_tdx.Date.map(lamda x:)
    # df_tdx.rename(columns={'vol':'Volume'}, inplace = True)
    # df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]
    # print(df_tdx.dtypes)
    # print(list(df_tdx))
    df_tdx = df_tdx.loc[:,['Date', 'Open', 'Close', 'Low', 'High', 'Volume']]
    # print(list(df_tdx))
    
    
    d_category_data = []
    d_values = []
    d_volumes = []
    # d_flags = []

    for i, tick in enumerate(df_tdx.values.tolist()):
        d_category_data.append(tick[0])
        d_values.append(tick)
        d_volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])
        # d_flags.append([i, 0])
        
    
    
    
    open_p = pd.DataFrame(d_values)[1]
    close_p = pd.DataFrame(d_values)[2]
    low_p = pd.DataFrame(d_values)[3]
    high_p = pd.DataFrame(d_values)[4]

    array_cdl2c = talib.CDLINVERTEDHAMMER(open_p, high_p, low_p, close_p)
    
    # array_cdl2c 与 d_volumes合并,
    # 然后用 array_cdl2c 的之替换 df_volumes 中的成交量
    # 列表转化为DataFrame方便列操作
    df_volumes = pd.DataFrame(d_volumes)
    df_volumes[1] = array_cdl2c
    # l_array_cdl2c = array_cdl2c.values.tolist()
    '''

    
    
    
    
    '''
    response = requests.get(
        url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json"
    )
    json_response = response.json()
    
    # 解析数据
    category_data = []
    values = []
    volumes = []

    for i, tick in enumerate(json_response):
        category_data.append(tick[0])
        values.append(tick)
        volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])
    # return {"categoryData": category_data, "values": values, "volumes": volumes}
    '''
    
    
    # net_chart_data = net_get_data()
    chart_data = get_data('bj430198')
    
    # chart_data = net_get_data()
    draw_charts()

程序有点大,近90M:

python talib python talib形态搜索_ci_05


有什么建议请在评论区留言,不接受其他交流方式,有合适的建议我就加到程序里。