DFA敏感词过滤算法的python实现
在网上查了下敏感词过滤方案,找到了一种名为DFA的算法,即Deterministic Finite
Automaton算法,翻译成中文就是确定有穷自动机算法。它的基本思想是基于状态转移来检索敏感词,只需要扫描一次待检测文本,就能对所有敏感词进行检测,所以效率比方案一高不少。
假设我们有以下5个敏感词需要检测:傻逼、傻子、傻大个、坏蛋、坏人。那么我们可以先把敏感词中有相同前缀的词组合成一个树形结构,不同前缀的词分属不同树形分支,以上述5个敏感词为例,可以初始化成如下2棵树:
把敏感词组成成树形结构有什么好处呢?最大的好处就是可以减少检索次数,我们只需要遍历一次待检测文本,然后在敏感词库中检索出有没有该字符对应的子树就行了,如果没有相应的子树,说明当前检测的字符不在敏感词库中,则直接跳过继续检测下一个字符;如果有相应的子树,则接着检查下一个字符是不是前一个字符对应的子树的子节点,这样迭代下去,就能找出待检测文本中是否包含敏感词了。
我们以文本“你是不是傻逼”为例,我们依次检测每个字符,因为前4个字符都不在敏感词库里,找不到相应的子树,所以直接跳过。当检测到“傻”字时,发现敏感词库中有相应的子树,我们把他记为tree-1,接着再搜索下一个字符“逼”是不是子树tree-1的子节点,发现恰好是,接下来再判断“逼”这个字符是不是叶子节点,如果是,则说明匹配到了一个敏感词了,在这里“逼”这个字符刚好是tree-1的叶子节点,所以成功检索到了敏感词:“傻逼”。大家发现了没有,在我们的搜索过程中,我们只需要扫描一次被检测文本就行了,而且对于被检测文本中不存在的敏感词,如这个例子中的“坏蛋”和“坏人”,我们完全不会扫描到,因此相比方案一效率大大提升了。
在python中,我们可以用dict来存储上述的树形结构,还是以上述敏感词为例,我们把每个敏感词字符串拆散成字符,再存储到dict中,可以这样存:
# -*- coding:utf-8 -*-
import time
time1 = time.time()
# DFA算法
class DFAFilter(object):
def __init__(self):
self.keyword_chains = {} # 关键词链表
self.delimit = '\x00' # 限定
def add(self, keyword):
keyword = keyword.lower() # 关键词英文变为小写
chars = keyword.strip() # 关键字去除首尾空格和换行
if not chars: # 如果关键词为空直接返回
return
level = self.keyword_chains
# 遍历关键字的每个字
for i in range(len(chars)):
# 如果这个字已经存在字符链的key中就进入其子字典
if chars[i] in level:
level = level[chars[i]]
else:
if not isinstance(level, dict):
break
for j in range(i, len(chars)):
level[chars[j]] = {}
last_level, last_char = level, chars[j]
level = level[chars[j]]
last_level[last_char] = {self.delimit: 0}
break
if i == len(chars) - 1:
level[self.delimit] = 0
def parse(self, path):
with open(path, encoding='utf-8') as f:
for keyword in f:
self.add(str(keyword).strip())
print(self.keyword_chains)
def filter(self, message, repl="*"):
message = message.lower()
ret = []
start = 0
while start < len(message):
level = self.keyword_chains
step_ins = 0
for char in message[start:]:
if char in level:
step_ins += 1
if self.delimit not in level[char]:
level = level[char]
else:
ret.append(repl * step_ins)
start += step_ins - 1
break
else:
ret.append(message[start])
break
else:
ret.append(message[start])
start += 1
return ''.join(ret)
if __name__ == "__main__":
gfw = DFAFilter()
path = "./1.txt"
gfw.parse(path)
text = "你真是个大傻逼,大傻子,傻大个,大坏蛋,坏人。"
result = gfw.filter(text)
print(text)
print(result)
time2 = time.time()
print('总共耗时:' + str(time2 - time1) + 's')
{'傻': {'大': {'个': {'\x00': 0}}, '逼': {'\x00': 0}}, '坏': {'人': {'\x00': 0}}}
你真是个大傻逼,大傻子,傻大个,大坏蛋,坏人。
你真是个大**,大傻子,***,大坏蛋,**。
总共耗时:0.0s