相信不少python初学者都会对if name == ‘main‘:这句话感到疑惑,没错,我也是。
让我们来探讨探讨,查了网上的一些资料,以下总结一波:
首先,我们知道每一个python文件(.py)都有两种作用
①直接运行;
②作为模块被别的.py文件引入
然后,name作为模块的内置属性,即.py文件的调用方式;如果是直接运行该文件,那么if name == ‘main‘:下面的代码就会执行。通常,我们在测试时可以在每个需要测试的py文件中写这句话来进行测试,这并不影响整个项目的最终执行结果,就像java项目中我们使用main方法来测试需要测试的类一样。
这里还有一个有趣的现象,如果我们在作为模块的那个文件中写比如:”if name == ‘ganzhiqi’:”,其中ganzhiqi是一个作为模块的文件的文件名,那么其后的代码也会执行。
下面举个栗子(神经网络中的感知器):
ganzhiqi.py:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from functools import reduce
class Perceptron(object):
def __init__(self, input_num, activator):
'''
初始化感知器,设置输入参数的个数,以及激活函数。
激活函数的类型为double -> double
'''
self.activator = activator
# 权重向量初始化为0
self.weights = [0.0 for _ in range(input_num)]
# 偏置项初始化为0
self.bias = 0.0
def __str__(self):
'''
打印学习到的权重、偏置项
'''
return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
def predict(self, input_vec):
'''
输入向量,输出感知器的计算结果
'''
# 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
# 最后利用reduce求和
return self.activator(
reduce(lambda a, b: a + b,
map(lambda (x, w): x * w,
zip(input_vec, self.weights))
, 0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
'''
输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
'''
for i in range(iteration):
self._one_iteration(input_vecs, labels, rate)
def _one_iteration(self, input_vecs, labels, rate):
'''
一次迭代,把所有的训练数据过一遍
'''
# 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
# 而每个训练样本是(input_vec, label)
samples = zip(input_vecs, labels)
# 对每个样本,按照感知器规则更新权重
for (input_vec, label) in samples:
# 计算感知器在当前权重下的输出
output = self.predict(input_vec)
# 更新权重
self._update_weights(input_vec, output, label, rate)
def _update_weights(self, input_vec, output, label, rate):
'''
按照感知器规则更新权重
'''
# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用感知器规则更新权重
delta = label - output
self.weights = map(
lambda (x, w): w + rate * delta * x,
zip(input_vec, self.weights))
# 更新bias
self.bias += rate * delta
if __name__ == 'ganzhiqi':
print '这是一个感知器'
and.py:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from ganzhiqi import Perceptron
def f(x):
'''
定义激活函数f
'''
return 1 if x > 0 else 0
def get_training_dataset():
'''
基于and真值表构建训练数据
'''
# 构建训练数据
# 输入向量列表
input_vecs = [[1, 1], [0, 0], [1, 0], [0, 1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels
def train_and_perceptron():
'''
使用and真值表训练感知器
'''
# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = Perceptron(2, f)
# 训练,迭代10轮, 学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
# 返回训练好的感知器
return p
if __name__ == '__main__':
# 训练and感知器
and_perception = train_and_perceptron()
# 打印训练获得的权重
print and_perception
# 测试
print '1 and 1 = %d' % and_perception.predict([1, 1])
print '0 and 0 = %d' % and_perception.predict([0, 0])
print '1 and 0 = %d' % and_perception.predict([1, 0])
print '0 and 1 = %d' % and_perception.predict([0, 1])
可以看到结果正如我们所料,包含了“这是一个感知器”:
这是一个感知器
weights :[0.1, 0.2]
bias :-0.200000
1 and 1 = 1
0 and 0 = 0
1 and 0 = 0
0 and 1 = 0