Java语言中字符串类型和字节数组类型相互之间的转换经常发生,网上的分析及代码也比较多,本文将分析总结常规的byte[]和String间的转换以及十六进制String和byte[]间相互转换的原理及实现。

  1. String转byte[]
    首先我们来分析一下常规的String转byte[]的方法,代码如下:
public static byte[] strToByteArray(String str) {
     if (str == null) {
         return null;
     }
     byte[] byteArray = str.getBytes();
     return byteArray;
 }

很简单,就是调用String类的getBytes()方法。看JDK源码可以发现该方法最终调用了String类如下的方法。

/**
  * JDK source code
  */
 public byte[] getBytes(Charset charset) {
     String canonicalCharsetName = ();
     if (canonicalCharsetName.equals("UTF-8")) {
         return Charsets.toUtf8Bytes(value, offset, count);
     } else if (canonicalCharsetName.equals("ISO-8859-1")) {
         return Charsets.toIsoLatin1Bytes(value, offset, count)      ;
     } else if (canonicalCharsetName.equals("US-ASCII")) {
         return Charsets.toAsciiBytes(value, offset, count);
     } else if (canonicalCharsetName.equals("UTF-16BE")) {
         return Charsets.toBigEndianUtf16Bytes(value, offset,        count);
     } else {
         CharBuffer chars = CharBuffer.wrap(this.value,      this.offset, this.count);
         ByteBuffer buffer = charset.encode      (chars.asReadOnlyBuffer());
         byte[] bytes = new byte[buffer.limit()];
         buffer.get(bytes);
         return bytes;
     }
 }

上述代码其实就是根据给定的编码方式进行编码。如果调用的是不带参数的getBytes()方法,则使用默认的编码方式,如下代码所示:

/**
  * JDK source code
  */
 private static Charset getDefaultCharset() {
     String encoding = System.getProperty("file.encoding",       "UTF-8");
     try {
         return Charset.forName(encoding);
     } catch (UnsupportedCharsetException e) {
         return Charset.forName("UTF-8");
     }
 }

关于默认的编码方式,Java API是这样说的:

The default charset is determined during virtual-machine startup and typically depends upon the locale and charset of the underlying operating system.

同样,由上述代码可以看出,默认编码方式是由System类的"file.encoding"属性决定的,经过测试,在简体中文Windows操作系统下,默认编码方式为"GBK",在Android平台上,默认编码方式为"UTF-8"。

  1. byte[]转String
    接下来分析一下常规的byte[]转为String的方法,代码如下:
public static String byteArrayToStr(byte[] byteArray) {
     if (byteArray == null) {
         return null;
     }
     String str = new String(byteArray);
     return str;
 }

很简单,就是String的构造方法之一。那我们分析Java中String的源码,可以看出所有以byte[]为参数的构造方法最终都调用了如下代码所示的构造方法。需要注意的是Java中String类的数据是Unicode类型的,因此上述的getBytes()方法是把Unicode类型转化为指定编码方式的byte数组;而这里的Charset为读取该byte数组时所使用的编码方式。

/**
  * JDK source code
  */
 public String(byte[] data, int offset, int byteCount, Charset       charset) {
     if ((offset | byteCount) < 0 || byteCount > data.length -       offset) { 
         throw failedBoundsCheck(data.length, offset,        byteCount);
     }
     // We inline UTF-8, ISO-8859-1, and US-ASCII decoders for       speed and because
     // 'count' and 'value' are final.
     String canonicalCharsetName = ();
     if (canonicalCharsetName.equals("UTF-8")) {
         byte[] d = data;
         char[] v = new char[byteCount];
         int idx = offset;
         int last = offset + byteCount;
         int s = 0;
         outer:
         while (idx < last) {
             byte b0 = d[idx++];
             if ((b0 & 0x80) == 0) {
                 // 0xxxxxxx
                 // Range:  U-00000000 - U-0000007F
                 int val = b0 & 0xff;
                 v[s++] = (char) val;
             } else if (((b0 & 0xe0) == 0xc0) || ((b0 & 0xf0)        == 0xe0) ||
                 ((b0 & 0xf8) == 0xf0) || ((b0 & 0xfc) == 0xf8)       || ((b0 & 0xfe)
                 == 0xfc)) {
                 int utfCount = 1;
                 if ((b0 & 0xf0) == 0xe0) utfCount = 2;
                 else if ((b0 & 0xf8) == 0xf0) utfCount = 3;
                 else if ((b0 & 0xfc) == 0xf8) utfCount = 4;
                 else if ((b0 & 0xfe) == 0xfc) utfCount = 5;
                 // 110xxxxx (10xxxxxx)+
                 // Range:  U-00000080 - U-000007FF (count ==        1)
                 // Range:  U-00000800 - U-0000FFFF (count ==        2)
                 // Range:  U-00010000 - U-001FFFFF (count ==        3)
                 // Range:  U-00200000 - U-03FFFFFF (count ==        4)
                 // Range:  U-04000000 - U-7FFFFFFF (count ==        5)
                 if (idx + utfCount > last) {
                     v[s++] = REPLACEMENT_CHAR;
                     continue;
                 }
                 // Extract usable bits from b0
                 int val = b0 & (0x1f >> (utfCount - 1));
                 for (int i = 0; i < utfCount; ++i) {
                     byte b = d[idx++];
                     if ((b & 0xc0) != 0x80) {
                         v[s++] = REPLACEMENT_CHAR;
                         idx--; // Put the input char back
                         continue outer;
                     }
                     // Push new bits in from the right side
                     val <<= 6;
                     val |= b & 0x3f;
                 }
                 // Note: Java allows overlong char
                 // specifications To disallow, check that val
                 // is greater than or equal to the minimum
                 // value for each count:
                 //
                 // count    min value
                 // -----   ----------
                 //   1           0x80
                 //   2          0x800
                 //   3        0x10000
                 //   4       0x200000
                 //   5      0x4000000
                 // Allow surrogate values (0xD800 - 0xDFFF) to
                 // be specified using 3-byte UTF values only
                 if ((utfCount != 2) && (val >= 0xD800) &&       (val <= 0xDFFF)) {
                     v[s++] = REPLACEMENT_CHAR;
                     continue;
                 }
                 // Reject chars greater than the Unicode        maximum of U+10FFFF.
                 if (val > 0x10FFFF) {
                     v[s++] = REPLACEMENT_CHAR;
                     continue;
                 }
                 // Encode chars from U+10000 up as surrogate        pairs
                 if (val < 0x10000) {
                     v[s++] = (char) val;
                 } else {
                     int x = val & 0xffff;
                     int u = (val >> 16) & 0x1f;
                     int w = (u - 1) & 0xffff;
                     int hi = 0xd800 | (w << 6) | (x >> 10);
                     int lo = 0xdc00 | (x & 0x3ff);
                     v[s++] = (char) hi;
                     v[s++] = (char) lo;
                 }
             } else {
                 // Illegal values 0x8*, 0x9*, 0xa*, 0xb*,       0xfd-0xff
                 v[s++] = REPLACEMENT_CHAR;
             }
         }
         if (s == byteCount) {
             // We guessed right, so we can use our temporary        array as-is.
             this.offset = 0;
             this.value = v;
             this.count = s;
         } else {
             // Our temporary array was too big, so reallocate       and copy.
             this.offset = 0;
             this.value = new char[s];
             this.count = s;
             System.arraycopy(v, 0, value, 0, s);
         }
     } else if (canonicalCharsetName.equals("ISO-8859-1")) {
         this.offset = 0;
         this.value = new char[byteCount];
         this.count = byteCount;
         Charsets.isoLatin1BytesToChars(data, offset,        byteCount, value);
     } else if (canonicalCharsetName.equals("US-ASCII")) {
         this.offset = 0;
         this.value = new char[byteCount];
         this.count = byteCount;
         Charsets.asciiBytesToChars(data, offset, byteCount,         value);
     } else {
         CharBuffer cb = charset.decode(ByteBuffer.wrap(data,        offset, byteCount));
         this.offset = 0;
         this.count = cb.length();
         if (count > 0) {
             // We could use cb.array() directly, but that       would mean we'd have to trust
             // the CharsetDecoder doesn't hang on to the        CharBuffer and mutate it later,
             // which would break String's immutability      guarantee. It would also tend to
             // mean that we'd be wasting memory because         CharsetDecoder doesn't trim the
             // array. So we copy.
             this.value = new char[count];
             System.arraycopy(cb.array(), 0, value, 0, count);
         } else {
             this.value = EmptyArray.CHAR;
         }
     }
 }

具体的转换过程较为复杂,其实就是将byte数组的一个或多个元素按指定的Charset类型读取并转换为char类型(char本身就是以Unicode编码方式存储的),因为String类的核心是其内部维护的char数组。因此有兴趣的同学可以研究下各种编码方式的编码规则,然后才能看懂具体的转换过程。

  1. byte[]转十六进制String
    所谓十六进制String,就是字符串里面的字符都是十六进制形式,因为一个byte是八位,可以用两个十六进制位来表示,因此,byte数组中的每个元素可以转换为两个十六进制形式的char,所以最终的HexString的长度是byte数组长度的两倍。闲话少说上代码:
public static String byteArrayToHexStr(byte[] byteArray) {
     if (byteArray == null){
         return null;
     }
     char[] hexArray = "0123456789ABCDEF".toCharArray();
     char[] hexChars = new char[byteArray.length * 2];
     for (int j = 0; j < byteArray.length; j++) {
         int v = byteArray[j] & 0xFF;
         hexChars[j * 2] = hexArray[v >>> 4];
         hexChars[j * 2 + 1] = hexArray[v & 0x0F];
     }
     return new String(hexChars);
 }

上述代码中,之所以要将byte数值和0xFF按位与,是因为我们为了方便后面的无符号移位操作(无符号右移运算符>>>只对32位和64位的值有意义),要将byte数据转换为int类型,而如果直接转换就会出现问题。因为java里面二进制是以补码形式存在的,如果直接转换,位扩展会产生问题,如值为-1的byte存储的二进制形式为其补码11111111,而转换为int后为11111111111111111111111111111111,直接使用该值结果就不对了。而0xFF默认是int类型,即0x000000FF,一个byte值跟0xFF相与会先将那个byte值转化成int类型运算,这样,相与的结果中高的24个比特就总会被清0,后面的运算才会正确。

  1. 十六进制String转byte[]
    没什么好说的了,就是byte[]转十六进制String的逆过程,放代码:
public static byte[] hexStrToByteArray(String str)
 {
     if (str == null) {
         return null;
     }
     if (str.length() == 0) {
         return new byte[0];
     }
     byte[] byteArray = new byte[str.length() / 2];
     for (int i = 0; i < byteArray.length; i++){
         String subStr = str.substring(2 * i, 2 * i + 2);
         byteArray[i] = ((byte)Integer.parseInt(subStr, 16));
     }
     return byteArray;
 }