• Python 的thread模块是比较底层的模块,Python的threading模块是对thread做了一些包装,可以更加方便的
    被使用;

1. 使用threading 模块

# 示例一: 单线程执行
import time

def say_happy():
    print("Happy Birthday!")
    time.sleep(2)

if __name__ == "__main__":
    for i in range(5):
        say_happy()


# 示例二: 多线程执行
import threading
import time


def say_happy():
    print("Happy Birthday!")
    time.sleep(2)


if __name__ == "__main__":
    for i in range(5):
        t = threading.Thread(target=say_happy)
        t.start()   # 启动线程,即让线程开始执行


# 示例三: 第二种创建多线程的方式
import threading
import time


class MyThread(threading.Thread):
    def __init__(self, num):
        threading.Thread.__init__(self)
        self.num = num
    
    def run(self):            # 定义每个线程要运行的函数
            print('running on number: %s' % self.num)
            
            time.sleep(3)


if __name__ == '__main__':
    t1 = MyThread(1)
    t2 = MyThread(2)
    t3 = MyThread(3)
    t1.start()
    t2.start()
    t3.start()

2. 多线程之间共享全局变量

# 示例:
from threading import Thread
import time


g_num = 100

def work1():
    global g_num
    for i in range(3):
        g_num += 1

    print("=== in work1, g_num is %d ===" % g_num)


def work2():
    global g_num
    print("=== in work2, g_num is %d ===" % g_num)


print("=== 线程创建之前g_num is %d ===" % g_num)

t1 = Thread(target=work1)
t1.start()

# 延时一会儿, 保证t1线程中的事情做完
time.sleep(1)

t2 = Thread(target=work2)
t2.start()

# 输出:
# === 线程创建之前g_num is 100 ===
# === in work1, g_num is 103 ===
# === in work2, g_num is 103 ===


# 示例二: 多线程共享变量的问题
from threading import Thread
import time

g_num = 0

def test1():
    global g_num
    for i in range(1000000):
        g_num += 1

    print("=== test1 === g_num=%d" % g_num)

def test2():
    global g_num
    for i in range(1000000):
        g_num += 1

    print("=== test2 === g_num=%d" % g_num)

p1 = Thread(target=test1)
p1.start()

# time.sleep(3)

p2 = Thread(target=test2)
p2.start()

print("=== g_num=%d" % g_num)

# 输出:
#   === g_num=281358
#   === test1 === g_num=1477304
#   === test2 === g_num=1531631


# 示例三: 列表当作实参传递到线程中
from threading import Thread
import time

def work1(nums):
    nums.append(44)
    print("=== in work1 ===", nums)

def work2(nums):
    # 延时一会儿,保证t1线程中的事情做完
    # 这里的参数,不需要使用 global 关键字
    time.sleep(1)
    print("=== in work2 ===", nums)

g_nums = [11, 22, 33]

t1 = Thread(target=work1, args=(g_nums,))
t1.start()

t2 = Thread(target=work2, args=(g_nums,))
t2.start()

3. 互斥锁

# 示例:
from threading import Thread, Lock
import time

g_num = 0

def test1():
    global g_num
    # 上锁
    mutex.acquire()
    for i in range(1000000):
        g_num += 1

    # 释放锁
    mutex.release()

    print("=== test1 === g_num=%d" % g_num)

def test2():
    global g_num
    mutex.acquire()
    for i in range(1000000):
        g_num += 1

    # 释放锁
    mutex.release()

    print("=== test2 === g_num=%d" % g_num)

# 创建一把互斥锁
mutex = Lock()

p1 = Thread(target=test1)
p1.start()


p2 = Thread(target=test2)
p2.start()

# 输出:
#     === test1 === g_num=1000000
#     === test2 === g_num=2000000

4. 死锁

# 示例
import threading
import time

class MyThread1(threading.Thread):
    def run(self):
        if mutexA.acquire():
            print(self.name + "=== do1 === up ===")
            time.sleep(1)

            if mutexB.acquire():
                print(self.name + "=== do1 === down ===")
                mutexB.release()
            mutexA.release()

class MyThread2(threading.Thread):
    def run(self):
        if mutexB.acquire():
            print(self.name + "=== do2 === up ===")
            time.sleep(1)

            if mutexA.acquire():
                print(self.name + "=== do2 === down ===")
                mutexA.release()
            mutexB.release()

mutexA = threading.Lock()
mutexB = threading.Lock()
# lock = threading.RLock()        # 递归锁(可重用锁)


if __name__ == '__main__':
    t1 = MyThread1()
    t2 = MyThread2()
    t1.start()
    t2.start()

5. 信号量(Semaphore)

  • 信号量用来控制线程并发数的,BoundedSemaphore或Semaphore管理一个内置的计数器,每当调用acquire() 时-1,调用release()时,+1;
  • 计数器不能小于0,当计数器为0时,acquire()将阻塞线程至同步锁定状态,直至其他线程调用release();
  • BoundedSemaphoreSemaphore的唯一区别在于前者将在调用release时,检查计数器的值是否超过了计
    数器的初始值,如果超过了将抛出一个异常;
# 示例:
import threading
import time

class myThread(threading.Thread):
    def run(self):
        if semaphore.acquire():
            print(self.name)
            time.sleep(5)
            semaphore.release()

if __name__ == '__main__':
    semaphore = threading.BoundedSemaphore(5)     # 创建信号量锁
    thrs = []
    for i in range(100):
        thrs.append(myThread())
    for t in thrs:
        t.start()

6. 条件变量同步(Condition)

  • 有一类线程需要满足条件之后,才能够继续执行,Python提供了threading.Condition对象用于条件变量线程的支
    持,它除了能提供RLock()Lock()的方法外,还提供了wait(),notify(),notifyAll()方法;
  • wait(): 条件不满足时调用,线程会释放锁并进入等待阻塞;
  • notify(): 条件创造后调用,通知等待池激活一个线程;
  • notifyAll(): 条件创造后调用,通知等待池激活所有线程;
# 示例一:
lock_con = threading.Condition([Lock/Rlock]): 锁参数是可选选项,不传入锁,对象自动创建一个 RLock()

# 示例二:
import threading
import time
from random import randint

class Producer(threading.Thread):
    def run(self):
        global L
        while True:
            val = randint(0, 100)
            print('生产者', self.name, ':Append' + str(val), L)
            if lock_con.acquire():
                L.append(val)
                lock_con.notify()
                lock_con.release()
            time.sleep(3)
class Customer(threading.Thread):
    def run(self):
        global L
        while True:
            lock_con.acquire()
            if len(L) == 0:
                lock_con.wait()
            print('消费者', self.name,':Delete'+str(L[0]), L)
            del L[0]
            lock_con.release()
            time.sleep(0.25)

if __name__ == '__main__':
    L = []
    lock_con = threading.Condition()
    threads = []
    for i in range(5):
        threads.append(Producer())
    threads.append(Customer())
    for t in threads:
        t.start()
    for t in threads:
        t.join()

7. 同步条件(Event)

  • 条件同步和条件变量同步差不多意思,只是少了锁功能,因为条件同步设计于不访问共享资源的条件环境。
  • event = threading.Event(): 条件环境对象,初始值为False;
  • event.isSet(): 返回event的状态值;
  • event.wait(): 如果 event.isSet() == False将阻塞线程;
  • event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态,等待操作系统调度;
  • event.clear(): 恢复event的状态值为False;
# 示例一:
import threading
import time
class Boss(threading.Thread):
    def run(self):
        print('Boss: 今晚大家都要加班到22:00')
        event.isSet() or event.set()
        time.sleep(5)
        print('Boss: <22:00>可以下班了')
        event.isSet() or event.set()

class Worker(threading.Thread):
    def run(self):
        event.wait()
        print('Worker: 哎.....命苦啊!')
        time.sleep(0.25)
        event.clear()
        event.wait()
        print('Worker: Oh Yeah!')

if __name__ == '__main__':
    event = threading.Event()
    threads = []
    for i in range(5):
        threads.append(Worker())
    threads.append(Boss())
    for t in threads:
        t.start()
    for t in threads:
        t.join()


# 示例二: 红绿灯
import threading
import time
import random

def light():
    if not event.isSet():
        event.set()     # 绿灯状态
    count = 0
    while True:
        if count < 10:
            print('\033[42;1m--green light on---\033[0m')
        elif count < 13:
            print('\033[43;1m--yellow light on---\033[0m')
        elif count < 20:
            if event.isSet():
                event.clear()
            print('\033[41;1m--red light on---\033[0m')
        else:
            count = 0
            event.set()     #打开绿灯
        time.sleep(1)
        count += 1

def car(n):
    while 1:
        time.sleep(random.randrange(10))
        if event.isSet():   # 绿灯
            print('car [%s] is running...' % n)
        else:
            print('car [%s] is waiting for the red light...' %n)

if __name__ == '__main__':
    event = threading.Event()
    Light = threading.Thread(target = light)
    Light.start()
    for i in range(3):
        t = threading.Thread(target = car, args = (i,))
        t.start()

8. 生产者与消费者模式

# 示例:
from queue import Queue

class Producer(threading.Thread):
    def run(self):
        global queue
        count = 0
        while True:
            if queue.qsize() < 1000:
                for i in range(100):
                    count = count + 1
                    msg = "生成产品" + str(count)
                    queue.put(msg)
            time.sleep(0.5)

class Consumer(threading.Thread):
    def run(self):
        global queue
        while True:
            if queue.qsize() > 100:
                for i in range(3):
                    msg = self.name + "消费了" + queue.get()
                    print(msg)
            time.sleep(1)

if __name__ == '__main__':
    queue = Queue()

    for i in range(500):
        queue.put("初始产品"+str(i))
    for i in range(2):
        p = Producer()
        p.start()
    for i in range(5):
        c = Consumer()
        c.start()

9. ThreadLocal 对象在线程中的使用

# 示例:
import threading

# 创建全局 ThreadLocal 对象
local_school = threading.local()

def process_student():
    # 获取当前线程关联的student
    std = local_school.student
    print("Hello, %s (in %s)" % (std, threading.current_thread().name))

def process_thread(name):
    # 绑定 ThreadLocal 的 student
    local_school.student = name
    process_student()

t1 = threading.Thread(target=process_thread, args=("zhangsan",), name="Thread-A")
t2 = threading.Thread(target=process_thread, args=("lisi",), name="Thread-B")
t1.start()
t2.start()
t1.join()
t2.join()

# 输出:
#   Hello, zhangsan (in Thread-A)
#   Hello, lisi (in Thread-B)

10. 异步

# 示例:
from multiprocessing import Pool
import time
import os

def test():
    print("=== 进程池中的进程 === pid=%d, ppid=%d==" % (os.getpid(), os.getppid()))
    for i in range(3):
        print("=== %d ===" % i)
        time.sleep(1)
    return "hehe"

def test2(args):
    print("=== callback func == pid=%d" % os.getpid())
    print("=== callback func == args=%s" % args)

pool = Pool(3)
pool.apply_async(func=test, callback=test2)

time.sleep(5)

print("=== 主进程 = pid=%d ===" % os.getpid())

11. Join 和 Daemon

  • join:
  • join完成的工作就是线程同步,即主线程任务结束之后,进入阻塞状态,一直等待其他的子线程执行结束之后,主线程才终止;
  • setDaemon(True):
  • 将线程声明为守护进程,必须在start()方法调用之前设置,这个方法基本和join是相反的;
  • 当我们在程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程就兵分两路,分别运行,那么当
    主线程完成想退出时,会检验子线程是否完成。如果子线程未完成,则主线程会等待子线程完成后再退出。
  • 但是,有时候我们需要的是只要主线程完成了,不管子线程是否完成,都要和主线程一起退出,这时,就可以使用setDaemon 方法;
# 示例:
import threading
from time import ctime, sleep
import time

def music(func):
    for i in range(2):
        print('Begin listening to %s. %s' % (func, ctime()))
        sleep(2)
        print('end listening %s' % ctime())

def movie(func):
    for i in range(2):
        print('Begin watching at the %s! %s' % (func, ctime()))
        sleep(3)
        print('end watching %s'% ctime())

threads = []
t1 = threading.Thread(target = music, args = ('七里香',))
threads.append(t1)
t2 = threading.Thread(target = movie, args = ('阿甘正传',))
threads.append(t2)

if __name__ == '__main__':
    for t in threads:
        t.setDaemon(True)
        t.start()

    print(threading.current_thread())    # 打印当前线程名称
    print(threading.active_count())      # 
    print('all over %s', % ctime)

12. 线程中的队列(Queue)

  • queue定义了三种信息队列模式类:
  • Queue([maxsize]):FIFO队列模式,[maxsize]定义队列容量; 缺省,即无穷大;
  • LifoQueue([maxsize]):LIFO队列模式;
  • PriorityQueue([maxsize]):优先级队列模式,使用此队列时,项目应该是(priority,data)的形式;
# 示例一:
import queue
q = queue.Queue(maxsize = 10)

# 存入一个值
q.put(item, block=True, timeout=None)
# block 为可选参数,如果队列满了的话,put(item),调用者将被阻塞, 而put(item,0)会报Full异常;

# 取出一个值
q.get(item, block=False, timeout=None)
# block 为可选参数,如果队列为空, get(item,0)会报Empty异常;

# 常用方法:
#   q.qsize(): 返回队列大小;
#   q.full(): 如果队列满了,返回True,否则返回False;
#   q.empty(): 如果队列为空,返回True,否则返回False;


# 示例二:
import threading
import queue
from time import sleep
from random import randint
class Production(threading.Thread):
    def run(self):
        while True:
            r = randint(0, 100)
            q.put(r)
            print('生产出来%s号包子' % r)
            sleep(1)
class Process(threading.Thread):
    def run(self):
        while True:
            re = q.get()
            print('吃掉%s号包子' % re)

if __name__ == '__main__':
    q = queue.Queue(10)
    threads = [Production(), Production(), Production(), Process()]
    for t in threads:
        t.start()