• 什么是延时任务,什么是定时任务
  • 方案一:数据库轮询
  • 方案二:JDK的延迟队列
  • 方案三:时间轮算法
  • 方案四:redis缓存
  • 方案五:消息队列


什么是延时任务,什么是定时任务

定时任务有执行周期,延时任务没有执行周期,只有在某一事件触发后的一段时间内被执行。
定时任务有明确的触发时间,延时任务没有。
定时任务一般以批处理的形式,处理多个任务,延时任务一般只是单个任务。

延时任务的例子:用户下单后30分钟未付款,则订单自动取消。

本文主要讲延时任务的处理方法

方案

优势

劣势

数据库轮询

实现简单

存在明显的性能瓶颈

JDK的延迟队列

实现简单

数据内存态,不可靠

时间轮算法

实时性高

实现难度大,内存消耗大

消息队列

异步交互可削峰

延时的时间长度不可控,如果数据需要持久化则性能会降低

redis缓存

数据持久化,性能高

实现难度大

方案一:数据库轮询

即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行 update 或 delete 等操作

可以用 quartz 来实现

<dependency>
    <groupId>org.quartz-scheduler</groupId>
    <artifactId>quartz</artifactId>
    <version>2.2.2</version>
</dependency>
public class MyJob implements Job {

    public void execute(JobExecutionContext context) throws JobExecutionException {
        System.out.println("开始扫描");
    }

    public static void main(String[] args) throws Exception {
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job", "group").build();
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger", "group1")
                .withSchedule(
                        SimpleScheduleBuilder
                                .simpleSchedule()
                                .withIntervalInSeconds(3).
                                repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}

方案二:JDK的延迟队列

利用 JDK 自带的 DelayQueue 来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入 DelayQueue 中的对象,是必须实现 Delayed 接口的。

public class OrderDelay implements Delayed {

    private String orderId;

    private long timeout;

    OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }

    public int compareTo(Delayed other) {
        if (other == this) {
            return 0;
        }
        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t.getDelay(TimeUnit.NANOSECONDS));
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }

    // 返回距离你自定义的超时时间还有多少
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);
    }
    void print() {
        System.out.println(orderId + "编号的订单要删除了。。。。");
    }
}
public class DelayQueueDemo {

    public static void main(String[] args) {
        List<String> list = new ArrayList<String>();
        list.add("00000001");
        list.add("00000002");
        list.add("00000003");
        list.add("00000004");
        list.add("00000005");

        DelayQueue<OrderDelay> queue = newDelayQueue < OrderDelay > ();
        long start = System.currentTimeMillis();
        for (int i = 0; i < 5; i++) {
            //延迟三秒取出
            queue.put(new OrderDelay(list.get(i), TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));
            try {
                queue.take().print();
                System.out.println("After " + (System.currentTimeMillis() - start) + " MilliSeconds");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

方案三:时间轮算法

时间轮算法可以类比于时钟,箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个 3 个重要的属性参数,ticksPerWheel(一轮的 tick 数),tickDuration(一个 tick 的持续时间)以及 timeUnit(时间单位),例如当 ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。
如果当前指针指在 1 上面,我有一个任务需要 4 秒以后执行,那么这个执行的线程回调或者消息将会被放在 5 上。

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.24.Final</version>
</dependency>
public class HashedWheelTimerTest {

    static class MyTimerTask implements TimerTask {

        boolean flag;

        public MyTimerTask(boolean flag) {
            this.flag = flag;
        }

        public void run(Timeout timeout) throws Exception {
            System.out.println("要去数据库删除订单了。。。。");
            this.flag = false;
        }
    }

    public static void main(String[] argv) {
        MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
        int i = 1;
        while (timerTask.flag) {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(i + "秒过去了");
            i++;
        }
    }

}

方案四:redis缓存

redis 的 zset,zset 是一个有序集合,每一个元素(member)都关联了一个 score,通过 score 排序来取集合中的值。
以超时订单为例,将订单超时时间戳与订单号分别设置为 score 和 member,系统扫描第一个元素判断是否超时。

public class AppTest {

    private static final String ADDR = "127.0.0.1";

    private static final int PORT = 6379;

    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);

    public static Jedis getJedis() {
        return jedisPool.getResource();
    }

    //生产者,生成5个订单放进去
    public void productionDelayMessage() {
        for (int i = 0; i < 5; i++) {
            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId", second3later, "OID0000001" + i);
            System.out.println(System.currentTimeMillis() + "ms:redis生成了一个订单任务:订单ID为" + "OID0000001" + i);
        }
    }

    //消费者,取订单

    public void consumerDelayMessage() {
        Jedis jedis = AppTest.getJedis();
        while (true) {
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
            if (items == null || items.isEmpty()) {
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                continue;
            }
            int score = (int) ((Tuple) items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);
            if (nowSecond >= score) {
                String orderId = ((Tuple) items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() + "ms:redis消费了一个任务:消费的订单OrderId为" + orderId);
            }
        }
    }

    public static void main(String[] args) {
        AppTest appTest = new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }

}

以上的解决方法,存在一个问题,在高并发的情况下,一个资源会被多次处理。
解决方法:可引入分布式锁或者对ZREM的返回值进行判断

方案五:消息队列

采用 rabbitMQ 的延时队列。RabbitMQ 具有以下两个特性,可以实现延迟队列

RabbitMQ 可以针对 Queue 和 Message 设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为 dead letter
lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。