插值法又称"内插法",是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
不同插值法的特点介绍:
1、距离倒数乘方法
距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额。对于一个较小的方次,权重比较均匀地分配给各数据点。
2、克里金法
克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型 和矿块效应。
3、最小曲率法
最小曲率法广泛用于地球科学,它试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法
多元回归被用来确定数据的大规模的趋势和图案,可以用几个选项来确定你需要的趋势面类型。多元回归实际上不是插值器,因为它并不试图预测未知的值,实际上是一个趋势面分析作图程序。
5、径向基本函数法
径向基本函数法是多个数据插值方法的组合。根据适应你的数据和生成一个圆滑曲面的能力,其中的复二次函数被许多人认为是最好的方法。所有径向基本函数法都是准确的插值器,它们都要为适应你的数据和生成一个圆滑曲面的能力而努力。
6、谢别德法
谢别德法使用距离倒数加权的最小二乘方的方法。它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观,所以它是一个准确或圆滑插值器。
7、三角网
三角网插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。
8、自然邻点插值法
自然邻点插值法广泛应用于一些研究领域中。其基本原理是对于一组泰森多边形,当在数据集中加入一个新的数据点时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重,待插点的权重和目标泰森多边形成比例。
9、最近邻点插值法
最近邻点插值法又称泰森多边形方法,最初用于从离散分布气象站的降雨量数据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速的赋值。实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值作为待的节点值。