一、函数

1、函数的定义
Python 把函数也当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如: 参数是函数、返回值是函数。
函数的定义。
函数以def关键词开头,后接函数名和圆括号()。
函数执行的代码以冒号起始,并且缩进。
return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回None。

def functionname (parameters):
       "函数_文档字符串"
        function_suite
        return [expression]

2、函数文档

def MyFirstFunction(name):
    "函数定义过程中name是形参"
    # 因为Ta只是一个形式,表示占据一个参数位置
    print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))


MyFirstFunction('老马的程序人生')  
# 传递进来的老马的程序人生叫做实参,因为Ta是具体的参数值!

print(MyFirstFunction.__doc__)  
# 函数定义过程中name是形参

help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
#    函数定义过程中name是形参

3、函数参数
函数有六种参数形态如下:
a、位置参数 (positional argument)

def functionname(arg1):
       "函数_文档字符串"
       function_suite
       return [expression]

arg1是位置参数,在调用函数时,位置固定。

b、默认参数 (default argument)

def functionname(arg1, arg2=v):
       "函数_文档字符串"
       function_suite
       return [expression]

arg2 = v - 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。
默认参数一定要放在位置参数 后面,不然程序会报错。
Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。
c、可变参数 (variable argument)

def functionname(arg1, arg2=v, *args):
       "函数_文档字符串"
       function_suite
       return [expression]

args - 可变参数,可以是从零个到任意个,自动组装成元组。
加了星号()的变量名会存放所有未命名的变量参数。

d、关键字参数 (keyword argument)

def functionname(arg1, arg2=v, args, *kw):
       "函数_文档字符串"
       function_suite
       return [expression]

** kw - 关键字参数,可以是从零个到任意个,自动组装成字典。
「可变参数」和「关键字参数」的同异总结如下:

可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)。
关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)。
e、命名关键字参数 (name keyword argument)

def functionname(arg1, arg2=v, args, *, nkw, *kw):
       "函数_文档字符串"
       function_suite
       return [expression]

*, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *。
如果要限制关键字参数的名字,就可以用「命名关键字参数」
使用命名关键字参数时,要特别注意不能缺少参数名。

def printinfo(arg1, *, nkw, **kwargs):
    print(arg1)
    print(nkw)
    print(kwargs)


printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}

printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given

f、参数组合
在 Python 中定义函数,可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,但是注意,参数定义的顺序必须是:

位置参数、默认参数、可变参数和关键字参数。
位置参数、默认参数、命名关键字参数和关键字参数。
要注意定义可变参数和关键字参数的语法:

*args 是可变参数,args 接收的是一个 tuple
**kw 是关键字参数,kw 接收的是一个 dict
命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置参数。

警告:虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数很难懂。

4、函数的返回值

函数的返回值可以是变量、元祖、列表、字符串等。

5、变量的作用域

Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
闭包

是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。闭包的返回值通常是函数

def funX(x):
    def funY(y):
        return x * y

    return funY


i = funX(8)
print(type(i))  # <class 'function'>
print(i(5))  # 40

要修改闭包作用域中的变量则需要 nonlocal 关键字。
递归

如果一个函数在内部调用自身本身,这个函数就是递归函数。

# 计算N的阶乘
# 利用循环
n = 5
for k in range(1, 5):
    n = n * k
print(n)  # 120

# 利用递归
def factorial(n):
    if n == 1:
        return 1
    return n * factorial(n - 1)


print(factorial(5)) # 120

6、Lambda 表达式

匿名函数的定义
在 Python 里有两类函数:

第一类:用 def 关键词定义的正规函数
第二类:用 lambda 关键词定义的匿名函数
Python 使用 lambda 关键词来创建匿名函数,而非def关键词,它没有函数名,其语法结构如下:

lambda argument_list: expression

lambda - 定义匿名函数的关键词。
argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
:- 冒号,在函数参数和表达式中间要加个冒号。
expression - 只是一个表达式,输入函数参数,输出一些值。
注意:

expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数

def sqr(x):
    return x ** 2


print(sqr)
# <function sqr at 0x000000BABD3A4400>

y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
# <function <lambda> at 0x000000BABB6AC1E0>

y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20))  # 30

func = lambda *args: sum(args)
print(func(1, 2, 3, 4, 5))  # 15

匿名函数的应用
函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
匿名函数在 filter和map函数中的应用:
filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist))  # [1, 3, 5, 7, 9]

map(function, *iterables) 根据提供的函数对指定序列做映射。

m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))  
# [1, 4, 9, 16, 25]

m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))  
# [3, 7, 11, 15, 19]

二、类与对象

对象 = 属性 + 方法 对象是类的实例。
Python 使用关键字class 定义Python类,关键字后要紧跟类的名称、分号和类的实现。

class Turtle:  # Python中的类名约定以大写字母开头
    """关于类的一个简单例子"""
    # 属性
    color = 'green'
    weight = 10
    legs = 4
    shell = True
    mouth = '大嘴'

    # 方法
    def climb(self):
        print('我正在很努力的向前爬...')

    def run(self):
        print('我正在飞快的向前跑...')

    def bite(self):
        print('咬死你咬死你!!')

    def eat(self):
        print('有得吃,真满足...')

    def sleep(self):
        print('困了,睡了,晚安,zzz')


tt = Turtle()
print(tt)
# <__main__.Turtle object at 0x0000007C32D67F98>

print(type(tt))
# <class '__main__.Turtle'>

print(tt.__class__)
# <class '__main__.Turtle'>

print(tt.__class__.__name__)
# Turtle

tt.climb()
# 我正在很努力的向前爬...

tt.run()
# 我正在飞快的向前跑...

tt.bite()
# 咬死你咬死你!!

# Python类也是对象。它们是type的实例
print(type(Turtle))
# <class 'type'>

类的继承
子类会自动继承父类之间的数据和方法
多态
不同对象对同一方法响应不同的行动
self
Python 里的self相当于C++的this 指针。

class Test:
    def prt(self):
        print(self)
        print(self.__class__)


t = Test()
t.prt()
# <__main__.Test object at 0x000000BC5A351208>
# <class '__main__.Test'>

类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self。在调用方法时,我们无需明确提供与参数 self 相对应的参数。

三、python的魔法

Python 的对象天生拥有一些神奇的方法,它们是面向对象的 Python 的一切…

它们是可以给你的类增加魔力的特殊方法…

如果你的对象实现了这些方法中的某一个,那么这个方法就会在特殊的情况下被 Python 所调用,而这一切都是自动发生的…

类有一个名为** init(self[, param1, param2…])**的魔法方法,该方法在类实例化时会自动调用。

class Ball:
    def __init__(self, name):
        self.name = name

    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)


a = Ball("球A")
b = Ball("球B")
c = Ball("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...

公有和私有
在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。

四、类的继承

Python 的类支持继承,派生定义如下:

class DerivedClassName(BaseClassName):
       statement-1
              .
              .
              .
       statement-N

BaseClassName(基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用
ython 虽然支持多继承的形式,但我们一般不使用多继承,因为容易引起混乱。

class DerivedClassName(Base1, Base2, Base3):
       statement-1
              .
              .
              .
       statement-N

需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法。

# 类定义
class People:
    # 定义基本属性
    name = ''
    age = 0
    # 定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0

    # 定义构造方法
    def __init__(self, n, a, w):
        self.name = n
        self.age = a
        self.__weight = w

    def speak(self):
        print("%s 说: 我 %d 岁。" % (self.name, self.age))


# 单继承示例
class Student(People):
    grade = ''

    def __init__(self, n, a, w, g):
        # 调用父类的构函
        People.__init__(self, n, a, w)
        self.grade = g

    # 覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))


# 另一个类,多重继承之前的准备
class Speaker:
    topic = ''
    name = ''

    def __init__(self, n, t):
        self.name = n
        self.topic = t

    def speak(self):
        print("我叫 %s,我是一个演说家,我演讲的主题是 %s" % (self.name, self.topic))


# 多重继承
class Sample01(Speaker, Student):
    a = ''

    def __init__(self, n, a, w, g, t):
        Student.__init__(self, n, a, w, g)
        Speaker.__init__(self, n, t)

# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample01("Tim", 25, 80, 4, "Python")
test.speak()  
# 我叫 Tim,我是一个演说家,我演讲的主题是 Python

class Sample02(Student, Speaker):
    a = ''

    def __init__(self, n, a, w, g, t):
        Student.__init__(self, n, a, w, g)
        Speaker.__init__(self, n, t)

# 方法名同,默认调用的是在括号中排前地父类的方法
test = Sample02("Tim", 25, 80, 4, "Python")
test.speak()  
# Tim 说: 我 25 岁了,我在读 4 年级

组合

class Turtle:
    def __init__(self, x):
        self.num = x


class Fish:
    def __init__(self, x):
        self.num = x


class Pool:
    def __init__(self, x, y):
        self.turtle = Turtle(x)
        self.fish = Fish(y)

    def print_num(self):
        print("水池里面有乌龟%s只,小鱼%s条" % (self.turtle.num, self.fish.num))


p = Pool(2, 3)
p.print_num()
# 水池里面有乌龟2只,小鱼3条

五、类、类对象和实例对象

python 面向对象返回对象的值 python函数返回对象_python 面向对象返回对象的值


类对象:创建一个类,其实也是一个对象也在内存开辟了一块空间,称为类对象,类对象只有一个。

class A(object):
pass

实例对象:就是通过实例化类创建的对象,称为实例对象,实例对象可以有多个。
类属性:类里面方法外面定义的变量称为类属性。类属性所属于类对象并且多个实例对象之间共享同一个类属性,说白了就是类属性所有的通过该类实例化的对象都能共享。
实例属性:实例属性和具体的某个实例对象有关系,并且一个实例对象和另外一个实例对象是不共享属性的,说白了实例属性只能在自己的对象里面使用,其他的对象不能直接使用,因为self是谁调用,它的值就属于该对象。

绑定

Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。

Python 对象的数据属性通常存储在名为.__ dict__的字典中,我们可以直接访问__dict__,或利用 Python 的内置函数vars()获取.__ dict__。

class CC:
    def setXY(self, x, y):
        self.x = x
        self.y = y

    def printXY(self):
        print(self.x, self.y)


dd = CC()
print(dd.__dict__)
# {}

print(vars(dd))
# {}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000C3473DA048>, 'printXY': <function CC.printXY at 0x000000C3473C4F28>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

dd.setXY(4, 5)
print(dd.__dict__)
# {'x': 4, 'y': 5}

print(vars(CC))
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

一些相关的内置函数(BIF)
issubclass(class, classinfo) 方法用于判断参数 class 是否是类型参数 classinfo 的子类。
一个类被认为是其自身的子类。
classinfo可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True。
hasattr(object, name)用于判断对象是否包含对应的属性。
getattr(object, name[, default])用于返回一个对象属性值。
setattr(object, name, value)对应函数 getattr(),用于设置属性值,该属性不一定是存在的。
delattr(object, name)用于删除属性。

六、魔法方法

魔法方法总是被双下划线包围,例如__init__。

魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。

魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。

魔法方法的第一个参数应为cls(类方法) 或者self(实例方法)。

cls:代表一个类的名称
self:代表一个实例对象的名称
基本的魔法方法
__ init__(self[, …]) 构造器,当一个实例被创建的时候调用的初始化方法。

__new __(cls[, …]) 在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__。
new ** 至少要有一个参数cls **,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init__。
new__对当前类进行了实例化,并将实例返回,传给__init__的self。但是,执行了__new,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)


class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(cls, *args, **kwargs)


b = B(10)

# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.B'>
# into B __init__

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)


class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(A, *args, **kwargs)  # 改动了cls变为A


b = B(10)

# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.A'>

** _ _del _ _ **(self) 析构器,当一个对象将要被系统回收之时调用的方法。
Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。

大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。
__ str__ (self):

当你打印一个对象的时候,触发__ str__
当你使用%s格式化的时候,触发__str__
str强转数据类型的时候,触发__str__
__ repr__(self):

repr是str的备胎
有__str__的时候执行__str__,没有实现__str__的时候,执行__repr__
repr(obj)内置函数对应的结果是__repr__的返回值
当你使用%r格式化的时候 触发__repr__
算术运算符
类型工厂函数 指不通过类而是通过函数来创建对象。

__add__(self, other)定义加法的行为:+
__sub__(self, other)定义减法的行为:-
__mul__(self, other)定义乘法的行为:*
__truediv__(self, other)定义真除法的行为:/
__floordiv__(self, other)定义整数除法的行为://
__mod__(self, other) 定义取模算法的行为:%
__divmod__(self, other)定义当被 divmod() 调用时的行为
divmod(a, b)把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)。
__pow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
__lshift__(self, other)定义按位左移位的行为:<<
__rshift__(self, other)定义按位右移位的行为:>>
__and__(self, other)定义按位与操作的行为:&
__xor__(self, other)定义按位异或操作的行为:^
__or__(self, other)定义按位或操作的行为:|

反算术运算符
反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。

__radd__(self, other)定义加法的行为:+
__rsub__(self, other)定义减法的行为:-
__rmul__(self, other)定义乘法的行为:*
__rtruediv__(self, other)定义真除法的行为:/
__rfloordiv__(self, other)定义整数除法的行为://
__rmod__(self, other) 定义取模算法的行为:%
__rdivmod__(self, other)定义当被 divmod() 调用时的行为
__rpow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
__rlshift__(self, other)定义按位左移位的行为:<<
__rrshift__(self, other)定义按位右移位的行为:>>
__rand__(self, other)定义按位与操作的行为:&
__rxor__(self, other)定义按位异或操作的行为:^
__ror__(self, other)定义按位或操作的行为:|

增量赋值运算符

__iadd__(self, other)定义赋值加法的行为:+=
__isub__(self, other)定义赋值减法的行为:-=
__imul__(self, other)定义赋值乘法的行为:*=
__itruediv__(self, other)定义赋值真除法的行为:/=
__ifloordiv__(self, other)定义赋值整数除法的行为://=
__imod__(self, other)定义赋值取模算法的行为:%=
__ipow__(self, other[, modulo])定义赋值幂运算的行为:**=
__ilshift__(self, other)定义赋值按位左移位的行为:<<=
__irshift__(self, other)定义赋值按位右移位的行为:>>=
__iand__(self, other)定义赋值按位与操作的行为:&=
__ixor__(self, other)定义赋值按位异或操作的行为:^=
__ior__(self, other)定义赋值按位或操作的行为:|=
#一元运算符
__neg__(self)定义正号的行为:+x
__pos__(self)定义负号的行为:-x
__abs__(self)定义当被abs()调用时的行为
__invert__(self)定义按位求反的行为:~x
#属性访问
__getattr__(self, name): 定义当用户试图获取一个不存在的属性时的行为。
__getattribute__(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
__setattr__(self, name, value):定义当一个属性被设置时的行为。
__delattr__(self, name):定义当一个属性被删除时的行为。

描述符

# 描述符就是将某种特殊类型的类的实例指派给另一个类的属性。

__get__(self, instance, owner)用于访问属性,它返回属性的值。
__set__(self, instance, value)将在属性分配操作中调用,不返回任何内容。
__del__(self, instance)控制删除操作,不返回任何内容。

七、迭代器

迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
迭代器只能往前不会后退。
字符串,列表或元组对象都可用于创建迭代器:

string = 'lsgogroup'
for c in string:
    print(c)

'''
l
s
g
o
g
r
o
u
p
'''

for c in iter(string):
    print(c)

迭代器有两个基本的方法:iter() 和 next()
iter(object) 函数用来生成迭代器。
next(iterator[, default]) 返回迭代器的下一个项目。
iterator – 可迭代对象
default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。

八、生成器

在 Python 中,使用了 yield 的函数被称为生成器(generator)
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。