一、生成对抗网络 – Generative Adversarial Networks | GAN

生成对抗网络(GAN)由2个重要的部分构成:

  1. 生成器(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器
  2. 判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据”
  • 单独交替迭代训练生成器和判别器
  • 通过不断的循环,「生成器G」和「判别器D」的能力都越来越强。
  • 最终我们得到了一个效果非常好的「生成器G」,我们就可以用它来生成我们想要的图片了

gan算法 python gan算法的优点_计算机视觉


GAN的优缺点

3个优点:

  1. 能更好建模数据分布(图像更锐利、清晰)
  2. 理论上,GANs 能训练任何一种生成器网络。其他的框架需要生成器网络有一些特定的函数形式,比如输出层是高斯的。
  3. 无需利用马尔科夫链反复采样,无需在学习过程中进行推断,没有复杂的变分下界,避开近似计算棘手的概率的难题。

2个缺点:

  1. 难训练,不稳定。生成器和判别器之间需要很好的同步,但是在实际训练中很容易D收敛,G发散。D/G 的训练需要精心的设计。
  2. 模式缺失(Mode Collapse)问题。GANs的学习过程可能出现模式缺失,生成器开始退化,总是生成同样的样本点,无法继续学习。

10大典型的GAN算法

gan算法 python gan算法的优点_gan算法 python_02


包含上百种GAN的变体:GANs动物园

文中还有13种应用场景

二、GAN学习指南:从原理入门到制作生成Demo

GAN原理介绍

GAN的基本原理以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。
D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。

三、开发者自述:我是这样学习 GAN 的

觉得前面讲得很简单?试试这个公式多到爆炸的原理讲解