Python多元非线性回归及绘图
文章目录
- Python多元非线性回归及绘图
- 部分数据截图
- 代码逻辑
- 导入所需库和模块
- 定义非线性模型函数
- 设置数据源和变量
- 非线性回归与参数估计
- 计算拟合优度指标和均方根误差
- 构建拟合公式字符串
- 绘制三维散点图和拟合曲面
- 完整代码
- 部分结果
- 总结
- 参考
在数字地形模型这门课做的一个小实验,代码实现的是以影像因子和地形要素为自变量,采样后的高程计算出的指标为因变量进行回归,本质上是通过curve_fit进行多元非线性回归,但是当时的要素偏多,需要写代码依次使用不同的自变量和因变量回归
环境:Python 3.9
部分数据截图
代码逻辑
导入所需库和模块
# coding=gbk
# -*- coding = utf-8 -*-
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
-
numpy
:用于数值计算和数组操作。 -
pandas
:用于读取和处理Excel数据。 -
scipy.optimize.curve_fit
:用于非线性最小二乘拟合。 -
matplotlib.pyplot
:用于绘制三维散点图和曲面。
定义非线性模型函数
def nonlinear_model(xy, a, b, c):
x, y = xy
return (a * x - b) * y + c
定义nonlinear_model
函数,它接受两个坐标xy
(包含x和y的元组)以及三个参数a
, b
, c
,即 (a * x - b) * y + c
设置数据源和变量
excel_file_path = 'E:\zbh.xlsx'
df = pd.read_excel(excel_file_path)
x = 'R'
y = 'SOS'
z = 'MEAN'
x_data = np.array(df[x])
y_data = np.array(df[y])
z_data = np.array(df[z])
指定的Excel文件路径可以改改,读取变量R
, SOS
, MEAN
的列数据,这里也需要根据数据本身来改
非线性回归与参数估计
popt, pcov = curve_fit(nonlinear_model, (x_data, y_data), z_data)
a_fit, b_fit, c_fit = popt
z_fit = nonlinear_model((x_data, y_data), a_fit, b_fit, c_fit)
使用scipy.optimize.curve_fit
对给定的nonlinear_model
函数进行拟合,传入观测到的(x_data, y_data)
对和对应的z_data
作为目标值。curve_fit
返回最佳拟合参数popt
和协方差矩阵pcov
。接着,将最佳参数赋值给a_fit
, b_fit
, c_fit
,并使用这些参数计算出所有数据点的拟合值z_fit
。
计算拟合优度指标和均方根误差
ss_total = np.sum((z_data - np.mean(z_data)) ** 2)
ss_reg = np.sum((z_fit - np.mean(z_data)) ** 2)
r_squared = ss_reg / ss_total
rmse = np.sqrt(np.mean((z_data - z_fit) ** 2))
print("R方:", r_squared)
print("RMSE:", rmse)
计算拟合优度指标(R方),均方根误差(RMSE),最后打印
构建拟合公式字符串
formula = "{} = ({:.2f} * {} + ({:.2f})) * {} + {:.2f}".format(z, a_fit, x, b_fit, y, c_fit)
print(formula)
用已得到的最佳参数和变量名构建最终的拟合公式,并保留两位小数精度。
绘制三维散点图和拟合曲面
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x_data, y_data, z_data, color='blue', label='Data Points')
X, Y = np.meshgrid(np.linspace(min(x_data), max(x_data), 30),
np.linspace(min(y_data), max(y_data), 30))
Z = nonlinear_model((X.flatten(), Y.flatten()), a_fit, b_fit, c_fit).reshape(X.shape)
ax.plot_surface(X, Y, Z, color='r', alpha=0.6, label='Fitted Surface')
ax.set_xlabel(x)
ax.set_ylabel(y)
ax.set_zlabel(z)
plt.title(x +"-"+ y + "-" + z + ":" + formula)
plt.show()
计算Z值和绘图
完整代码
# coding=gbk
# -*- coding = utf-8 -*-
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
# 定义非线性模型函数
def nonlinear_model(xy, a, b, c):
x, y = xy
return (a * x - b) * y + c
# 指定Excel文件路径并读取
excel_file_path = 'E:\zbh.xlsx'
df = pd.read_excel(excel_file_path)
x = 'R'
y = 'SOS'
z = 'MEAN'
x_data = np.array(df[x])
y_data = np.array(df[y])
z_data = np.array(df[z])
# 利用 curve_fit 进行非线性回归
popt, pcov = curve_fit(nonlinear_model, (x_data, y_data), z_data)
a_fit, b_fit, c_fit = popt
z_fit = nonlinear_model((x_data, y_data), a_fit, b_fit, c_fit)
# 计算指标
ss_total = np.sum((z_data - np.mean(z_data)) ** 2)
ss_reg = np.sum((z_fit - np.mean(z_data)) ** 2)
r_squared = ss_reg / ss_total
rmse = np.sqrt(np.mean((z_data - z_fit) ** 2))
print("R方:", r_squared)
print("RMSE:", rmse)
# 拟合公式
formula = "{} = ({:.2f} * {} + ({:.2f})) * {} + {:.2f}".format(z, a_fit, x, b_fit, y, c_fit)
print(formula)
# 绘制三维散点图和拟合曲面
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='3d')
# 散点图
ax.scatter(x_data, y_data, z_data, color='blue', label='Data Points')
# 曲面图
X, Y = np.meshgrid(np.linspace(min(x_data), max(x_data), 30),
np.linspace(min(y_data), max(y_data), 30))
Z = nonlinear_model((X.flatten(), Y.flatten()), a_fit, b_fit, c_fit).reshape(X.shape)
ax.plot_surface(X, Y, Z, color='r', alpha=0.6, label='Fitted Surface')
ax.set_xlabel(x)
ax.set_ylabel(y)
ax.set_zlabel(z)
plt.title(x +"-"+ y + "-" + z + ":" + formula)
plt.show()
部分结果
总结
由于这次实验用到的数据量较少,因此画图的效果感觉一般,趋势不明显,计算出的指标参考意义也有限,数据量大一点效果好坏会一目了然
参考