分布式日志采集系统Flume学习

一、Flume架构

1.1 Hadoop业务开发流程

flume收集mysql 的binlog日志 flume日志采集实训总结_hdfs

1.2 Flume概述

flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。

支持在日志系统中定制各类数据发送方,用于收集数据;

同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。

flume的数据流由事件(Event)贯穿始终。

事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把event推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。

Event的概念:

flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume再删除自己缓存的数据。
在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?—–event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录,event也是事务的基本单位。event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。

简单理解:event信息就是flume收集到的数据(日志记录)

flume收集mysql 的binlog日志 flume日志采集实训总结_数据_02

Flume 运行的核心是 Agent。Flume以agent为最小的独立运行单位。一个agent就是一个JVM。

它是一个完整的数据收集工具,含有三个核心组件,分别是source、 channel、 sink。

通过这些组件, Event 可以从一个地方流向另一个地方,如下图所示。

flume收集mysql 的binlog日志 flume日志采集实训总结_hdfs_03

flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent,agent本身是一个java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。
agent里面包含3个核心的组件:source—->channel—–>sink,类似生产者、仓库、消费者的架构。
source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。
channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。
sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、hbase、solr、自定义。

1.2.1 Source

Source是数据的收集端,负责将数据捕获后进行特殊的格式化,将数据封装到事件(event) 里,然后将事件推入Channel中。 Flume提供了很多内置的Source, 支持 Avro, log4j, syslog 和 http post(body为json格式)。可以让应用程序同已有的Source直接打交道,如AvroSource
如果内置的Source无法满足需要, Flume还支持自定义Source。

flume收集mysql 的binlog日志 flume日志采集实训总结_flume_04

Source支持的类型

flume收集mysql 的binlog日志 flume日志采集实训总结_学习_05

1.2.2 Channel

Channel是连接Source和Sink的组件,大家可以将它看做一个数据的缓冲区(数据队列),它可以将事件暂存到内存中也可以持久化到本地磁盘上, 直到Sink处理完该事件。介绍两个较为常用的Channel, MemoryChannel和FileChannel。

Channel支持的类型

flume收集mysql 的binlog日志 flume日志采集实训总结_学习_06

1.2.3 Sink

Sink从Channel中取出事件,然后将数据发到别处,可以向文件系统、数据库、 hadoop存数据, 也可以是其他agent的Source。在日志数据较少时,可以将数据存储在文件系统中,并且设定一定的时间间隔保存数据。

flume收集mysql 的binlog日志 flume日志采集实训总结_flume_07

1.3 Flume运行机制

Flume 的核心是把数据从数据源收集过来,再送到目的地。为了保证输送一定成功,在送到目的地之前,会先缓存数据,待数据真正到达目的地后,删除自己缓存的数据

Flume 传输的数据的基本单位是 Event,如果是文本文件,通常是一行记录,这也是事务的基本单位。 Event 从 Source,流向 Channel,再到 Sink,本身为一个 byte 数组,并可携带 headers 信息。 Event 代表着一个数据流的最小完整单元,从外部数据源来,向外部的目的地去。

值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。

比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,

也就是说,多个agent可以协同工作。

1.4 Flume可靠性

Flume 使用事务性的方式保证传送Event整个过程的可靠性。 Sink 必须在Event 已经被传达到下一站agent里,又或者,已经被存入外部数据目的地之后,才能把 Event 从 Channel 中 remove 掉。这样数据流里的 event 无论是在一个 agent 里还是多个 agent 之间流转,都能保证可靠,因为以上的事务保证了 event 会被成功存储起来。比如 Flume支持在本地保存一份channel文件作为备份,而memory channel 将event存在内存 queue 里,速度快,但丢失的话无法恢复。

1.5 flume的广义用法(多个agent顺序连接)

可以将多个Agent顺序连接起来,将最初的数据源经过收集,存储到最终的存储系统中。这是最简单的情况,一般情况下,应该控制这种顺序连接的
Agent 的数量,因为数据流经的路径变长了,如果不考虑failover的话,出现故障将影响整个Flow上的Agent收集服务。

flume收集mysql 的binlog日志 flume日志采集实训总结_hdfs_08

二、Flume的安装(解压即安装)

1、上传至虚拟机,并解压

tar -zxvf apache-flume-1.9.0-bin.tar.gz -C /usr/local/soft/

在环境变量中增加如下命令,可以使用 soft 快速切换到 /usr/local/soft

alias soft=‘cd /usr/local/soft/’

2、重命名目录,并配置环境变量

mv apache-flume-1.9.0-bin/ flume-1.9.0
vim /etc/profile
source /etc/profile

3、查看flume版本

flume-ng version
[root@master soft]# flume-ng version
Flume 1.9.0
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: d4fcab4f501d41597bc616921329a4339f73585e
Compiled by fszabo on Mon Dec 17 20:45:25 CET 2018
From source with checksum 35db629a3bda49d23e9b3690c80737f9
[root@master soft]#

三、使用案例

在使用之前,提供一个大致思想,使用Flume的过程是确定scource类型,channel类型和sink类型,编写conf文件并开启服务,在数据捕获端进行传入数据流入到目的地。

案例一、从控制台打入数据,在控制台显示

1、确定scource类型,channel类型和sink类型

确定的使用类型分别是,netcat source, memory channel, logger sink.

2、编写conf文件

#a代表agent的名称,r1代表source的名称。c1代表channel名称,k1代表的是sink的名称
#声明各个组件
a.sources=r1
a.channels=c1
a.sinks=k1
#定义source类型,这里是试用netcat的类型
a.sources.r1.type=netcat
a.sources.r1.bind=192.168.40.110
a.sources.r1.port=8888
#定义source发送的下游channel
a.sources.r1.channels=c1
#定义channel
a.channels.c1.type=memory
#缓存的数据条数
a.channels.c1.capacity=1000
#事务数据量
a.channels.c1.transactionCapacity=1000
#定义sink的类型,确定上游channel
a.sinks.k1.channel=c1
a.sinks.k1.type=logger

3、开启服务,我们重新开启复制一个客户端进行开启服务

命令: 注意 -n 后面跟着的是你在conf文件中定义好的,-f 后面跟着的是编写conf文件的路径

[root@master scrips]# flume-ng agent -n a -c flume-1.9.0/conf -f /usr/local/soft/bigdata17/scrips/netcat.conf -Dflume.root.logger=DEBUG,console

4、在另一个客户端输入命令:

注意:这里的master和8888是在conf文件中设置好的ip地址和端口

在输入第二个命令的窗口中输入数据,回车,在服务端就会接收到数据。

yum install -y telnet
telnet master 8888

flume收集mysql 的binlog日志 flume日志采集实训总结_数据_09

flume收集mysql 的binlog日志 flume日志采集实训总结_数据_10

案例二、从本地指定路径中打入数据到HDFS

1、同样,我们需要先确定scource类型,channel类型和sink类型

我们确定使用的类型分别是,spooldir source, memory channle, hdfs sink

2、编写conf文件

a1.sources = r1
a1.sinks = k1
a1.channels = c1
#指定spooldir的属性
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/soft/flumedata
#时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp
#指定sink的类型
a1.sinks.k1.type = hdfs
#指定hdfs的集群地址和路径,路径如果没有创建会自动创建
a1.sinks.k1.hdfs.path =hdfs://master:9000/shujia/bigdata17/flumeout/log_s/dt=%Y-%m-%d
#指定hdfs路径下生成的文件的前缀
a1.sinks.k1.hdfs.filePrefix = log_%Y-%m-%d
#手动指定hdfs最小备份
a1.sinks.k1.hdfs.minBlockReplicas=1
#设置数据传输类型
a1.sinks.k1.hdfs.fileType = DataStream
#如果参数为0,不按照条数生成文件。如果参数为n,就是按照n条生成一个文件
a1.sinks.k1.hdfs.rollCount = 100000
#这个参数是hdfs下文件sink的数据size。每sink 32MB的数据,自动生成一个文件
a1.sinks.k1.hdfs.rollSize =0
#每隔n 秒 将临时文件滚动成一个目标文件。如果是0,就不按照时间进行生成目标文件。
a1.sinks.k1.hdfs.rollInterval =0
a1.sinks.k1.hdfs.idleTimeout=0
#指定channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 100000
a1.channels.c1.transactionCapacity = 10000
 #组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3、开启服务

[root@master scrips]# flume-ng agent -n a1 -c ../../flume/conf -f ./linux2hdfs.conf -Dflume.root.logger=DEBUG, console

4、将文件复制到指定的目录下

cp DIANXIN.csv /usr/local/soft/flumedata/

flume收集mysql 的binlog日志 flume日志采集实训总结_分布式_11

案例三、从java代码中进行捕获打入到HDFS

1、先确定scource类型,channel类型和sink类型

确定的三个组件的类型是,avro source, memory channel, hdfs sink

2、打开maven项目,添加依赖

<!-- https://mvnrepository.com/artifact/org.apache.flume/flume-ng-core -->
            <dependency>
                <groupId>org.apache.flume</groupId>
                <artifactId>flume-ng-core</artifactId>
                <version>1.9.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flume.flume-ng-clients</groupId>
                <artifactId>flume-ng-log4jappender</artifactId>
                <version>1.9.0</version>
            </dependency>

3、设置log4J的内容

log4j.rootLogger=INFO,stdout,flume

log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n


log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = 192.168.230.50
log4j.appender.flume.Port = 41414
log4j.appender.flume.UnsafeMode = true
log4j.appender.flume.layout=org.apache.log4j.PatternLayout 
log4j.appender.flume.layout.ConversionPattern=%m%n

4、编写conf文件

#定义agent名, source、channel、sink的名称
a.sources = r1
a.channels = c1
a.sinks = k1

#具体定义source
a.sources.r1.type = avro
a.sources.r1.bind = 192.168.40.110
a.sources.r1.port = 41414

#具体定义channel
a.channels.c1.type = memory
a.channels.c1.capacity = 10000
a.channels.c1.transactionCapacity = 100

#具体定义sink
a.sinks.k1.type = hdfs
a.sinks.k1.hdfs.path =hdfs://master:9000/shujia/bigdata17/flumeout2/flume_hdfs_avro2
a.sinks.k1.hdfs.filePrefix = events-
a.sinks.k1.hdfs.minBlockReplicas=1
a.sinks.k1.hdfs.fileType = DataStream
#a.sinks.k1.hdfs.fileType = CompressedStream
#a.sinks.k1.hdfs.codeC = gzip
#不按照条数生成文件
a.sinks.k1.hdfs.rollCount = 1000
a.sinks.k1.hdfs.rollSize =0
#每隔N s将临时文件滚动成一个目标文件
a.sinks.k1.hdfs.rollInterval =0
a.sinks.k1.hdfs.idleTimeout=0 
#组装source、channel、sink

a.sources.r1.channels = c1
a.sinks.k1.channel = c1

5、开启服务,命令:

flume-ng agent -n a -c ../conf -f ./avro2hdfs2.conf -Dflume.root.logger=DEBUG,console

6、运行Java代码

flume收集mysql 的binlog日志 flume日志采集实训总结_学习_12

7、查看HDFS

flume收集mysql 的binlog日志 flume日志采集实训总结_学习_13

flume收集mysql 的binlog日志 flume日志采集实训总结_分布式_14

案例四、监控HBase日志到Hbase表中(这里可以换成其他组件日志监控)

1、监控日志

提前建好表

create 'log','cf1'

编写conf文件 hbaselog2hdfs.conf

# a表示给agent命名为a
# 给source组件命名为r1
a.sources = r1
# 给sink组件命名为k1
a.sinks = k1 
# 给channel组件命名为c1
a.channels = c1
#指定spooldir的属性
a.sources.r1.type = exec 
a.sources.r1.command = cat /usr/local/soft/hbase-1.4.6/logs/hbase-root-master-master.log
#指定sink的类型
a.sinks.k1.type = hbase
a.sinks.k1.table = log
a.sinks.k1.columnFamily = cf1

#指定channel
a.channels.c1.type = memory 
a.channels.c1.capacity = 100000
# 表示sink每次会从channel里取多少数据
a.channels.c1.transactionCapacity = 100
# 组装
a.sources.r1.channels = c1 
a.sinks.k1.channel = c1

运行

flume-ng agent -n a -c ../conf -f ./ hbaselog2hdfs.conf -Dflume.root.logger=DEBUG,console
2、监控自定义的文件

确保test_idoall_org表在hbase中已经存在:

hbase(main):002:0> create 'test_idoall_org','uid','name'
0 row(s) in 0.6730 seconds

=> Hbase::Table - test_idoall_org
hbase(main):003:0> put 'test_idoall_org','10086','name:idoall','idoallvalue'
0 row(s) in 0.0960 seconds

2.创建配置文件:

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /usr/local/soft/flumedata/data.txt
a1.sources.r1.port = 44444
a1.sources.r1.host = 192.168.40.110
a1.sources.r1.channels = c1

# Describe the sink
a1.sinks.k1.type = logger
a1.sinks.k1.type = hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnFamily = name
a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
a1.sinks.k1.channel = memoryChannel

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3.启动flume agent:

flume-ng agent -n a1 -c ../../flume/conf -f ./flie2hbase.conf -Dflume.root.logger=DEBUG, console

4.产生数据:

echo "hello idoall.org from flume" >> data.txt

案例五、flume监控Http source

1、先确定scource类型,channel类型和sink类型

确定的三个组件的类型是,http source, memory channel, logger sink.

2、编写conf文件

a1.sources=r1
a1.sinks=k1
a1.channels=c1
 
a1.sources.r1.type=http
a1.sources.r1.port=50000
a1.sources.r1.channels=c1
 
a1.sinks.k1.type=logger
a1.sinks.k1.channel=c1
 
a1.channels.c1.type=memory
a1.channels.c1.capacity=10000
# 表示sink每次会从channel里取多少数据
a1.channels.c1.transactionCapacity=100

3、启动服务

flume-ng agent -n a1 -f ./httpToLogger.conf -Dflume.root.logger=DEBUG,console

4、复制一个窗口进行打数据

curl -X POST -d'[{"headers":{"h1":"v1","h2":"v2"},"body":"hello bigdata"}]'  http://192.168.40.110:50000

=50000
a1.sources.r1.channels=c1

a1.sinks.k1.type=logger
a1.sinks.k1.channel=c1

a1.channels.c1.type=memory
a1.channels.c1.capacity=10000

表示sink每次会从channel里取多少数据

a1.channels.c1.transactionCapacity=100

> **3、启动服务**

```shell
flume-ng agent -n a1 -f ./httpToLogger.conf -Dflume.root.logger=DEBUG,console

4、复制一个窗口进行打数据

curl -X POST -d'[{"headers":{"h1":"v1","h2":"v2"},"body":"hello bigdata"}]'  http://192.168.40.110:50000

flume收集mysql 的binlog日志 flume日志采集实训总结_数据_15