# 首次搜索
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import math
map_grid = [[1 for j in range(0, 8)] for i in range(0, 8)] # 定义列表
map_grid = np.array(map_grid) # 将列表转化为数组,因为只有数组才有维度的概念,方便切片
map_grid[3:6, 1] = 0 # 障碍物
map_grid[3:6, 5] = 0
map_grid[0, 3] = 5 # 起点
map_grid[7, 3] = 6 # 终点
def draw_effect(map_grid,second_path):
plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10) # 绘制热力图
plt.colorbar()
plt.xlim(-1, 8) # x轴的范围
plt.ylim(-1, 8)
my_x_ticks = np.arange(0, 8, 1) # x轴标号的范围
my_y_ticks = np.arange(0, 8, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
second_path = np.array(second_path)
plt.plot(second_path[:, 1:2],second_path[:, 0:1],'-')
# plt.grid(True) # 开启栅格 可以不开启
plt.show() # 可视化
open_list = [[7, 3, 0, 0, None, None]] # 将终点置于open列表中列表中分别有x0,y0坐标,h值,父节点X、Y坐标
close_list = []
# draw_effect(map_grid)
# 将邻域放入open_list中
def open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list):
if 0 <= x1 <= 7 and 0 <= y1 <= 7 and map_grid[x1, y1] != 4 and map_grid[x1, y1] != 0: # 左边没有越界并且没有在closelist里面
if map_grid[x1, y1] == 3: # 如果是在open_list中,h要更新
open_list = np.array(open_list)
if (h1 + h0) < open_list[np.where((open_list[:, 0] == x1) & (open_list[:, 1] == y1)), 2]:
h = h1 + h0
k = h1 + h0
open_list[np.where((open_list[:, 0] == x1) & (open_list[:, 1] == y1)), 2] = h
open_list[np.where((open_list[:, 0] == x1) & (open_list[:, 1] == y1)), 3] = k
open_list[np.where((open_list[:, 0] == x1) & (open_list[:, 1] == y1)), 4] = x0
open_list[np.where((open_list[:, 0] == x1) & (open_list[:, 1] == y1)), 4] = y0
open_list = list(open_list.tolist())
else: # 是new节点
h = h1 + h0
k = h1 + h0
# open_list = list(open_list)
open_list.append([x1, y1, h, k, x0, y0])
map_grid[x1, y1] = 3
return open_list
# 首次搜索
def first_search(open_list, close_list, map_grid): # 给出终点坐标,完成首次遍历
# 采用D算法遍历
# 选openlist中h最小的,将openlist按照h排序,取第一个,并删除第一个,将它放到close_list里面
open_list = list(open_list)
open_list.sort(key=lambda x: x[2])
# open_list.pop(0)
insert_list = open_list[0] # 引入中间列表,用来存储每一次被选中的遍历的点
x0 = int(insert_list[0])
y0 = int(insert_list[1])
open_list.pop(0)
close_list.append(list(insert_list))
map_grid[x0, y0] = 4 # 被加入到close_list里面
# 找insert_list的邻域 ----->寻找顺序:从左边开始逆时针
h0 = int(insert_list[2])
x1 = x0
y1 = y0 - 1
h1 = 10
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0 - 1
y1 = y0 - 1
h1 = 14
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0 - 1
y1 = y0
h1 = 10
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0 - 1
y1 = y0 + 1
h1 = 14
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0
y1 = y0 + 1
h1 = 10
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0 + 1
y1 = y0 + 1
h1 = 14
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0 + 1
y1 = y0
h1 = 10
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
x1 = x0 + 1
y1 = y0 - 1
h1 = 14
open_list = open_list_append(x0, y0, x1, y1, h0, h1, map_grid, open_list)
return [open_list, close_list, map_grid]
while map_grid[0, 3] != 4 and open_list != []:
[open_list, close_list, map_grid] = first_search(open_list, close_list, map_grid)
# 首次搜索完成
first_path = []
close_list = np.array(close_list)
xn = 0
yn = 3
while xn != 7 or yn != 3:
list1 = list(close_list[np.where((close_list[:, 0] == xn) & (close_list[:, 1] == yn))][0])
xn = int(list1[4])
yn = int(list1[5])
first_path.append(list1)
first_path.append([7, 3, 0, 0, None, None])
# 第二次搜索
# 通过上面的程序已经找到了一条路径,完成了第一次的搜索,此时每个节点的h和k是相等的。此时开始点在close list里面,最短路径在firstpath中。
# 可以看出,每个节点的父节点都是该节点的八个邻节点中k值最小的哪个。
# 当出现动态变化时,我们可以利用这个图尽快修正我们的路径,而不是重新规划。
# 当我们检测到某点被阻碍了:1、修改这个点的h值,h变为inf,把它放入openlist中。注意此时该节点的k还是小值,是原来哪个h的值,因此它将立即被取出
# 2、把这个修改扩散出去,直到kmin >=h
# 设置一个突然出现的障碍
map_grid[3, 3] = 0
close_list[np.where((close_list[:, 4] == 3) & (close_list[:, 5] == 3)), 2] = math.inf
close_list[np.where((close_list[:, 0] == 3) & (close_list[:, 1] == 3)), 2] = math.inf
insertRow = list(close_list[np.where((close_list[:, 4] == 3) & (close_list[:, 5] == 3))][0])
x = int(insertRow[0])
y = int(insertRow[1])
open_list.append(insertRow) # ->>>>>>open_list是列表格式
map_grid[x, y] = 3
close_list = list(close_list.tolist()) # ----->>>>>close_list是列表格式
close_list.remove(insertRow)
open_list.sort(key=lambda x: x[3]) # 先排序,选择k最小的节点
k_min = open_list[0][3] #
hx = open_list[0][2]
# 接下来把这个点扩散出去
def find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list):
close_list = np.array(close_list)
hy = close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 2][0]
if (hy <= k_old) and (hx > hy + h1):
close_list[np.where((close_list[:, 0] == x0) & (close_list[:, 1] == y0)), 4] = x1
close_list[np.where((close_list[:, 0] == x0) & (close_list[:, 1] == y0)), 5] = y1
close_list[np.where((close_list[:, 0] == x0) & (close_list[:, 1] == y0)), 2] = hy + h1
hx = hy + h1
return [hx, list(close_list.tolist())]
def find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list, map_grid):
close_list = np.array(close_list)
hy = close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 2][0]
if (close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] == x0 and close_list[
np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] == y0 and (hy != hx + h1)) or (
(hy > hx + h1) and (
(close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] != x0) or (
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] != y0))):
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] = x0
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] = y0
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 2] = hx + h1
Y = list(close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1))][0])
# 把Y放入open_list中
close_list = list(close_list.tolist())
close_list.remove(Y)
open_list.append(Y)
map_grid[x1, y1] = 3
return [open_list, close_list, map_grid]
def find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list, map_grid):
close_list = np.array(close_list)
hy = close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 2][0]
if (close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] == x0 and close_list[
np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] == y0 and (hy != hx + h1)):
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] = x0
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] = y0
close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 2] = hx + h1
Y = list(close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1))][0])
# 把Y放入open_list中
close_list = list(close_list.tolist())
close_list.remove(Y)
open_list.append(Y)
map_grid[x1, y1] = 3
else:
if ((close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] != x0 or close_list[
np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] != y0) and (hy > hx + h1)):
#print(list(close_list[np.where((close_list[:, 0] == x0) & (close_list[:, 1] == y0))][0]))
if map_grid[x0,y0]!=3:
X = list(close_list[np.where((close_list[:, 0] == x0) & (close_list[:, 1] == y0))][0])
close_list = list(close_list.tolist())
close_list.remove(X)
open_list.append(X)
else:
open_list = np.array(open_list)
X = list(open_list[np.where((open_list[:, 0] == x0) & (open_list[:, 1] == y0))][0])
open_list = list(open_list.tolist())
# # 把Y放入open_list中
map_grid[x0, y0] = 3
else:
if ((close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 4] != x0 or close_list[
np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1)), 5] != y0) and (hx > hy + h1)) and \
map_grid[x1, y1] == 4 and hy > k_old:
if map_grid[x1, y1] != 3:
Y = list(close_list[np.where((close_list[:, 0] == x1) & (close_list[:, 1] == y1))][0])
close_list = list(close_list.tolist())
close_list.remove(Y)
open_list.append(Y)
else:
open_list = np.array(open_list)
Y = list(open_list[np.where((open_list[:, 0] == x1) & (open_list[:, 1] == y1))][0])
open_list = list(open_list.tolist())
# 把Y放入open_list中
map_grid[x1, y1] = 3
return [open_list, close_list, map_grid]
# 扩散程序 process-state:先弹出openlist列表中k最小的节点,并删除这个节点。然后分类处理:
def process_state(open_list, close_list, map_grid):
# 修改这个点的h值
open_list.sort(key=lambda x: x[3]) # 先排序,选择k最小的节点
X = open_list[0] # X表示k最小的节点
x0 = int(X[0])
y0 = int(X[1])
close_list.append(X) # 将它放入closelist
map_grid[x0, y0] = 4
open_list.remove(X)
# 从openlist中删除这个节点
# 分类处理:(该节点处于lower状态,该节点处于lower状态)
k_old = X[3]
hx = X[2]
# print(close_list)
if k_old < hx: # k_old是上升状态
x1 = x0
y1 = y0 - 1
h1 = 10
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0 - 1
y1 = y0 - 1
h1 = 14
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0 - 1
y1 = y0
h1 = 10
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0 - 1
y1 = y0 + 1
h1 = 14
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0
y1 = y0 + 1
h1 = 10
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0 + 1
y1 = y0 + 1
h1 = 14
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0 + 1
y1 = y0
h1 = 10
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
x1 = x0 + 1
y1 = y0 - 1
h1 = 14
[hx, close_list] = find_neighbor(x0, y0, x1, y1, k_old, hx, h1, close_list)
# 找它的邻节点,看能不能让它的h降低
#print(hx)
# if k_old == hx: # 该节点x处于lower状态
# x1 = x0
# y1 = y0 - 1
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 - 1
# y1 = y0 - 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 - 1
# y1 = y0
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 - 1
# y1 = y0 + 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0
# y1 = y0 + 1
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 + 1
# y1 = y0 + 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 + 1
# y1 = y0
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 + 1
# y1 = y0 - 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor2(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# else:
# x1 = x0
# y1 = y0 - 1
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 - 1
# y1 = y0 - 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
# #
# x1 = x0 - 1
# y1 = y0
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
# #
# x1 = x0 - 1
# y1 = y0 + 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
# #
# x1 = x0
# y1 = y0 + 1
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
# x1 = x0 + 1
# y1 = y0 + 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
#
# x1 = x0 + 1
# y1 = y0
# h1 = 10
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
# x1 = x0 + 1
# y1 = y0 - 1
# h1 = 14
# [open_list, close_list, map_grid] = find_neighbor3(x0, y0, x1, y1, k_old, hx, h1, close_list, open_list,
# map_grid)
open_list.sort(key=lambda x: x[3]) # 先排序,选择k最小的节点
k_min = open_list[0][3] #
return [open_list, list(close_list), map_grid,k_min,hx]
while k_min<hx:
[open_list, close_list, map_grid,k_min,hx] = process_state(open_list, close_list, map_grid)
#避障
second_path = []
close_list = np.array(close_list)
xn = 0
yn = 3
while xn != 7 or yn != 3:
list1 = list(close_list[np.where((close_list[:, 0] == xn) & (close_list[:, 1] == yn))][0])
xn = int(list1[4])
yn = int(list1[5])
second_path.append(list1)
second_path.append([7, 3, 0, 0, None, None])
draw_effect(map_grid,second_path)
print("Find it")
# -*- coding: utf-8 -*-
import random
import copy
import time
import sys
import math
import tkinter #//GUI模块
import threading
from functools import reduce
# 参数
'''
ALPHA:信息启发因子,值越大,则蚂蚁选择之前走过的路径可能性就越大
,值越小,则蚁群搜索范围就会减少,容易陷入局部最优
BETA:Beta值越大,蚁群越就容易选择局部较短路径,这时算法收敛速度会
加快,但是随机性不高,容易得到局部的相对最优
'''
(ALPHA, BETA, RHO, Q) = (1.0,2.0,0.5,100.0)
# 城市数,蚁群
(city_num, ant_num) = (50,50)
distance_x = [
178,272,176,171,650,499,267,703,408,437,491,74,532,
416,626,42,271,359,163,508,229,576,147,560,35,714,
757,517,64,314,675,690,391,628,87,240,705,699,258,
428,614,36,360,482,666,597,209,201,492,294]
distance_y = [
170,395,198,151,242,556,57,401,305,421,267,105,525,
381,244,330,395,169,141,380,153,442,528,329,232,48,
498,265,343,120,165,50,433,63,491,275,348,222,288,
490,213,524,244,114,104,552,70,425,227,331]
#城市距离和信息素
distance_graph = [ [0.0 for col in range(city_num)] for raw in range(city_num)]
pheromone_graph = [ [1.0 for col in range(city_num)] for raw in range(city_num)]
#----------- 蚂蚁 -----------
class Ant(object):
# 初始化
def __init__(self,ID):
self.ID = ID # ID
self.__clean_data() # 随机初始化出生点
# 初始数据
def __clean_data(self):
self.path = [] # 当前蚂蚁的路径
self.total_distance = 0.0 # 当前路径的总距离
self.move_count = 0 # 移动次数
self.current_city = -1 # 当前停留的城市
self.open_table_city = [True for i in range(city_num)] # 探索城市的状态
city_index = random.randint(0,city_num-1) # 随机初始出生点
self.current_city = city_index
self.path.append(city_index)
self.open_table_city[city_index] = False
self.move_count = 1
# 选择下一个城市
def __choice_next_city(self):
next_city = -1
select_citys_prob = [0.0 for i in range(city_num)] #存储去下个城市的概率
total_prob = 0.0
# 获取去下一个城市的概率
for i in range(city_num):
if self.open_table_city[i]:
try :
# 计算概率:与信息素浓度成正比,与距离成反比
select_citys_prob[i] = pow(pheromone_graph[self.current_city][i], ALPHA) * pow((1.0/distance_graph[self.current_city][i]), BETA)
total_prob += select_citys_prob[i]
except ZeroDivisionError as e:
print ('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID = self.ID, current = self.current_city, target = i))
sys.exit(1)
# 轮盘选择城市
if total_prob > 0.0:
# 产生一个随机概率,0.0-total_prob
temp_prob = random.uniform(0.0, total_prob)
for i in range(city_num):
if self.open_table_city[i]:
# 轮次相减
temp_prob -= select_citys_prob[i]
if temp_prob < 0.0:
next_city = i
break
# 未从概率产生,顺序选择一个未访问城市
# if next_city == -1:
# for i in range(city_num):
# if self.open_table_city[i]:
# next_city = i
# break
if (next_city == -1):
next_city = random.randint(0, city_num - 1)
while ((self.open_table_city[next_city]) == False): # if==False,说明已经遍历过了
next_city = random.randint(0, city_num - 1)
# 返回下一个城市序号
return next_city
# 计算路径总距离
def __cal_total_distance(self):
temp_distance = 0.0
for i in range(1, city_num):
start, end = self.path[i], self.path[i-1]
temp_distance += distance_graph[start][end]
# 回路
end = self.path[0]
temp_distance += distance_graph[start][end]
self.total_distance = temp_distance
# 移动操作
def __move(self, next_city):
self.path.append(next_city)
self.open_table_city[next_city] = False
self.total_distance += distance_graph[self.current_city][next_city]
self.current_city = next_city
self.move_count += 1
# 搜索路径
def search_path(self):
# 初始化数据
self.__clean_data()
# 搜素路径,遍历完所有城市为止
while self.move_count < city_num:
# 移动到下一个城市
next_city = self.__choice_next_city()
self.__move(next_city)
# 计算路径总长度
self.__cal_total_distance()
#----------- TSP问题 -----------
class TSP(object):
def __init__(self, root, width = 800, height = 600, n = city_num):
# 创建画布
self.root = root
self.width = width
self.height = height
# 城市数目初始化为city_num
self.n = n
# tkinter.Canvas
self.canvas = tkinter.Canvas(
root,
width = self.width,
height = self.height,
bg = "#EBEBEB", # 背景白色
xscrollincrement = 1,
yscrollincrement = 1
)
self.canvas.pack(expand = tkinter.YES, fill = tkinter.BOTH)
self.title("TSP蚁群算法(n:初始化 e:开始搜索 s:停止搜索 q:退出程序)")
self.__r = 5
self.__lock = threading.RLock() # 线程锁
self.__bindEvents()
self.new()
# 计算城市之间的距离
for i in range(city_num):
for j in range(city_num):
temp_distance = pow((distance_x[i] - distance_x[j]), 2) + pow((distance_y[i] - distance_y[j]), 2)
temp_distance = pow(temp_distance, 0.5)
distance_graph[i][j] =float(int(temp_distance + 0.5))
# 按键响应程序
def __bindEvents(self):
self.root.bind("q", self.quite) # 退出程序
self.root.bind("n", self.new) # 初始化
self.root.bind("e", self.search_path) # 开始搜索
self.root.bind("s", self.stop) # 停止搜索
# 更改标题
def title(self, s):
self.root.title(s)
# 初始化
def new(self, evt = None):
# 停止线程
self.__lock.acquire()
self.__running = False
self.__lock.release()
self.clear() # 清除信息
self.nodes = [] # 节点坐标
self.nodes2 = [] # 节点对象
# 初始化城市节点
for i in range(len(distance_x)):
# 在画布上随机初始坐标
x = distance_x[i]
y = distance_y[i]
self.nodes.append((x, y))
# 生成节点椭圆,半径为self.__r
node = self.canvas.create_oval(x - self.__r,
y - self.__r, x + self.__r, y + self.__r,
fill = "#ff0000", # 填充红色
outline = "#000000", # 轮廓白色
tags = "node",
)
self.nodes2.append(node)
# 显示坐标
self.canvas.create_text(x,y-10, # 使用create_text方法在坐标(302,77)处绘制文字
text = '('+str(x)+','+str(y)+')', # 所绘制文字的内容
fill = 'black' # 所绘制文字的颜色为灰色
)
# 顺序连接城市
#self.line(range(city_num))
# 初始城市之间的距离和信息素
for i in range(city_num):
for j in range(city_num):
pheromone_graph[i][j] = 1.0
self.ants = [Ant(ID) for ID in range(ant_num)] # 初始蚁群
self.best_ant = Ant(-1) # 初始最优解
self.best_ant.total_distance = 1 << 31 # 初始最大距离
self.iter = 1 # 初始化迭代次数
# 将节点按order顺序连线
def line(self, order):
# 删除原线
self.canvas.delete("line")
def line2(i1, i2):
p1, p2 = self.nodes[i1], self.nodes[i2]
self.canvas.create_line(p1, p2, fill = "#000000", tags = "line")
return i2
# order[-1]为初始值
reduce(line2, order, order[-1])
# 清除画布
def clear(self):
for item in self.canvas.find_all():
self.canvas.delete(item)
# 退出程序
def quite(self, evt):
self.__lock.acquire()
self.__running = False
self.__lock.release()
self.root.destroy()
print (u"\n程序已退出...")
sys.exit()
# 停止搜索
def stop(self, evt):
self.__lock.acquire()
self.__running = False
self.__lock.release()
# 开始搜索
def search_path(self, evt = None):
# 开启线程
self.__lock.acquire()
self.__running = True
self.__lock.release()
while self.__running:
# 遍历每一只蚂蚁
for ant in self.ants:
# 搜索一条路径
ant.search_path()
# 与当前最优蚂蚁比较
if ant.total_distance < self.best_ant.total_distance:
# 更新最优解
self.best_ant = copy.deepcopy(ant)
# 更新信息素
self.__update_pheromone_gragh()
print (u"迭代次数:",self.iter,u"最佳路径总距离:",int(self.best_ant.total_distance))
# 连线
self.line(self.best_ant.path)
# 设置标题
self.title("TSP蚁群算法(n:随机初始 e:开始搜索 s:停止搜索 q:退出程序) 迭代次数: %d" % self.iter)
# 更新画布
self.canvas.update()
self.iter += 1
# 更新信息素
def __update_pheromone_gragh(self):
# 获取每只蚂蚁在其路径上留下的信息素
temp_pheromone = [[0.0 for col in range(city_num)] for raw in range(city_num)]
for ant in self.ants:
for i in range(1,city_num):
start, end = ant.path[i-1], ant.path[i]
# 在路径上的每两个相邻城市间留下信息素,与路径总距离反比
temp_pheromone[start][end] += Q / ant.total_distance
temp_pheromone[end][start] = temp_pheromone[start][end]
# 更新所有城市之间的信息素,旧信息素衰减加上新迭代信息素
for i in range(city_num):
for j in range(city_num):
pheromone_graph[i][j] = pheromone_graph[i][j] * RHO + temp_pheromone[i][j]
# 主循环
def mainloop(self):
self.root.mainloop()
#----------- 程序的入口处 -----------
if __name__ == '__main__':
print (u"""
--------------------------------------------------------
程序:蚁群算法解决TPS问题程序
作者:许彬
日期:2015-12-10
语言:Python 2.7
--------------------------------------------------------
""")
TSP(tkinter.Tk()).mainloop()