初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助,项目演示效果如下:

python opencv 全屏 opencv python canny_python cv2 打开 raw

1、导入库文件


这里主要使用PySimpleGUI、cv2和numpy库文件,PySimpleGUI库文件实现GUI可视化,cv2库文件是Python的OpenCV接口文件,numpy库文件实现数值的转换和运算,均可通过pip导入。

import PySimpleGUI as sg  #pip install pysimpleguiimport cv2  #pip install opencv-pythonimport numpy as np #pip install numpy
import PySimpleGUI as sg  #pip install pysimplegui
import cv2  #pip install opencv-python
import numpy as np #pip install numpy

2、设计GUI


基于PySimpleGUI库文件实现GUI设计,本项目界面设计较为简单,设计800X400尺寸大小的框图,浅绿色背景,主要由摄像头界面区域和控制按钮区域两部分组成。效果如下所示:

python opencv 全屏 opencv python canny_python cv2 打开 raw_02


GUI代码如下所示:

#背景色    sg.theme('LightGreen')    #定义窗口布局    layout = [      [sg.Image(filename='', key='image')],      [sg.Radio('None', 'Radio', True, size=(10, 1))],      [sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),       sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],      [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],      [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),       sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],      [sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),       sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],      [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),       sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],      [sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),       sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],      [sg.Button('Exit', size=(10, 1))]    ]    #窗口设计    window = sg.Window('OpenCV实时图像处理',               layout,               location=(800, 400),               finalize=True)
#背景色
    sg.theme('LightGreen')

    #定义窗口布局
    layout = [
      [sg.Image(filename='', key='image')],
      [sg.Radio('None', 'Radio', True, size=(10, 1))],
      [sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],
      [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
      [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),
       sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
      [sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),
       sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],
      [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),
       sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
      [sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),
       sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],
      [sg.Button('Exit', size=(10, 1))]
    ]

    #窗口设计
    window = sg.Window('OpenCV实时图像处理',
               layout,
               location=(800, 400),
               finalize=True)

3、调用摄像头


打开电脑内置摄像头,将数据显示在GUI界面上,效果如下所示:

python opencv 全屏 opencv python canny_python cv2 打开 raw_03


代码如下所示:

4、实时图像处理

4.1、阈值二值化


进行阈值二值化操作,大于阈值values['thresh_slider']的,使用255表示,小于阈值values['thresh_slider']的,使用0表示,效果如下所示:

python opencv 全屏 opencv python canny_opencv canny源码解析_04


代码如下所示:

if values['thresh']:    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]    frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)[1]
if values['thresh']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]
    frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)[1]

4.2、边缘检测


进行边缘检测,values['canny_slider_a']表示最小阈值,values['canny_slider_b']表示最大阈值,效果如下所示:

python opencv 全屏 opencv python canny_opencv canny源码解析_05


代码如下所示:

if values['canny']:    frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])
if values['canny']:
    frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])

4.3、轮廓检测


轮廓检测是形状分析和物体检测和识别的有用工具,连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度,效果如下所示:

python opencv 全屏 opencv python canny_python opencv 图像切割_06


代码如下所示:

if values['contour']:    hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)    hue = cv2.GaussianBlur(hue, (21, 21), 1)    hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),                      np.array([values['contour_slider'] + 30, 255, 220]))    cnts= cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]    cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)
if values['contour']:
    hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    hue = cv2.GaussianBlur(hue, (21, 21), 1)
    hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),
                      np.array([values['contour_slider'] + 30, 255, 220]))
    cnts= cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)

4.4、高斯滤波


进行高斯滤波,(21, 21)表示高斯矩阵的长与宽都是21,标准差取values['blur_slider'],效果如下所示:

python opencv 全屏 opencv python canny_opencv canny源码解析_07


代码如下所示:

if values['blur']:    frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])
if values['blur']:
    frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])

4.5、色彩转换


色彩空间的转化,HSV转换为BGR,效果如下所示:

python opencv 全屏 opencv python canny_python cv2 打开 raw_08


 代码如下所示:

if values['hue']:    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)    frame[:, :, 0] += int(values['hue_slider'])    frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)
if values['hue']:    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)    frame[:, :, 0] += int(values['hue_slider'])    frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)

4.6、调节对比度


增强对比度,使图像中的细节看起来更加清晰,效果如下所示:

python opencv 全屏 opencv python canny_opencv canny源码解析_09


代码如下所示:

if values['enhance']:    enh_val = values['enhance_slider'] / 40    clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))    lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)    lab[:, :, 0] = clahe.apply(lab[:, :, 0])    frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
if values['enhance']:
    enh_val = values['enhance_slider'] / 40
    clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
    lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
    lab[:, :, 0] = clahe.apply(lab[:, :, 0])
    frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)

5、退出系统


直接break即可跳出循环。

if event == 'Exit' or event is None:    break
if event == 'Exit' or event is None:
    break