目录

一.锁与同步

二.等待/通知机制

 三.信号量

一.锁与同步

在Java中,锁的概念都是基于对象的,所以我们又经常称它为对象锁。

可以以解释为:线程同步是线程之间按照一定的顺序执行。

为了达到线程同步,我们可以使用锁来实现它。

我们先来看看一个无锁的程序:

package nsu.myllxy.multithread;

/**
 * @author LXY
 */
public class NoneLock {

    static class ThreadA implements Runnable {
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                try {
                    Thread.sleep(10);
                    System.out.println("Thread A " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    static class ThreadB implements Runnable {
        @Override
        public void run() {
            for (int i = 0; i < 100; i++) {
                try {
                    Thread.sleep(10);
                    System.out.println("Thread B " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    public static void main(String[] args) {
        new Thread(new ThreadA()).start();
        new Thread(new ThreadB()).start();
    }
}

运行结果:

Thread B 0
Thread A 0
Thread B 1
Thread B 2
Thread A 1
Thread B 3
Thread A 2
Thread B 4
Thread A 3
Thread B 5
Thread A 4
Thread B 6
Thread A 5
Thread B 7
Thread A 6
Thread B 8

...

那我现在有一个需求,我想等A先执行完之后,再由B去执行,怎么办呢?最简单的方式就是使用一个“对象锁”:

package nsu.myllxy.multithread;

/**
 * @author LXY
 */
public class ObjectLock {
    private static Object lock = new Object();

    static class ThreadA implements Runnable {
        @Override
        public void run() {
            synchronized (lock) {
                for (int i = 0; i < 100; i++) {
                    try {
                        Thread.sleep(10);
                        System.out.println("Thread A " + i);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }

    static class ThreadB implements Runnable {
        @Override
        public void run() {
            synchronized (lock) {
                for (int i = 0; i < 100; i++) {
                    try {
                        Thread.sleep(10);
                        System.out.println("Thread B " + i);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        new Thread(new ThreadA()).start();
        Thread.sleep(10);
        new Thread(new ThreadB()).start();
    }
}

这里声明了一个名字为lock的对象锁。我们在ThreadAThreadB内需要同步的代码块里,都是用synchronized关键字加上了同一个对象锁lock

上文我们说到了,根据线程和锁的关系,同一时间只有一个线程持有一个锁,那么线程B就会等线程A执行完成后释放lock,线程B才能获得锁lock

这里在主线程里使用sleep方法睡眠了10毫秒,是为了防止线程B先得到锁。因为如果同时start,线程A和线程B都是出于就绪状态,操作系统可能会先让B运行。这样就会先输出B的内容,然后B执行完成之后自动释放锁,线程A再执行。

二.等待/通知机制

上面一种基于“锁”的方式,线程需要不断地去尝试获得锁,如果失败了,再继续尝试。这可能会耗费服务器资源。

而等待/通知机制是另一种方式。

Java多线程的等待/通知机制是基于Object类的wait()方法和notify()notifyAll()方法来实现的。

notify()方法会随机叫醒一个正在等待的线程,而notifyAll()会叫醒所有正在等待的线程。

前面我们讲到,一个锁同一时刻只能被一个线程持有。而假如线程A现在持有了一个锁lock并开始执行,它可以使用lock.wait()让自己进入等待状态。这个时候,lock这个锁是被释放了的。

这时,线程B获得了lock这个锁并开始执行,它可以在某一时刻,使用lock.notify(),通知之前持有lock锁并进入等待状态的线程A,说“线程A你不用等了,可以往下执行了”。

需要注意的是,这个时候线程B并没有释放锁lock,除非线程B这个时候使用lock.wait()释放锁,或者线程B执行结束自行释放锁,线程A才能得到lock锁。

我们用代码来实现一下:

package nsu.myllxy.multithread;

/**
 * @author LXY
 */
public class WaitAndNotify {
    private static Object lock = new Object();

    static class ThreadA implements Runnable {
        @Override
        public void run() {
            synchronized (lock) {
                for (int i = 0; i < 5; i++) {
                    try {
                        System.out.println("ThreadA: " + i);
                        lock.notify();
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }

    static class ThreadB implements Runnable {
        @Override
        public void run() {
            synchronized (lock) {
                for (int i = 0; i < 5; i++) {
                    try {
                        System.out.println("ThreadB: " + i);
                        lock.notify();
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        new Thread(new ThreadA()).start();
        Thread.sleep(1000);
        new Thread(new ThreadB()).start();
    }
}

// 输出:
ThreadA: 0
ThreadB: 0
ThreadA: 1
ThreadB: 1
ThreadA: 2
ThreadB: 2
ThreadA: 3
ThreadB: 3
ThreadA: 4
ThreadB: 4

在这个Demo里,线程A和线程B首先打印出自己需要的东西,然后使用notify()方法叫醒另一个正在等待的线程,然后自己使用wait()方法陷入等待并释放lock锁。

需要注意的是等待/通知机制使用的是使用同一个对象锁,如果你两个线程使用的是不同的对象锁,那它们之间是不能用等待/通知机制通信的。

 三.信号量

JDK提供了一个类似于“信号量”功能的类Semaphore。但本文不是要介绍这个类,而是介绍一种基于volatile关键字的自己实现的信号量通信。

后面会有专门的章节介绍volatile关键字,这里只是做一个简单的介绍。

volatile关键字能够保证内存的可见性,如果用volatile关键字声明了一个变量,在一个线程里面改变了这个变量的值,那其它线程是立马可见更改后的值的。

比如我现在有一个需求,我想让线程A输出0,然后线程B输出1,再然后线程A输出2…以此类推。我应该怎样实现呢?

代码:

public class Signal {
    private static volatile int signal = 0;

    static class ThreadA implements Runnable {
        @Override
        public void run() {
            while (signal < 5) {
                if (signal % 2 == 0) {
                    System.out.println("threadA: " + signal);
                    signal++;
                }
            }
        }
    }

    static class ThreadB implements Runnable {
        @Override
        public void run() {
            while (signal < 5) {
                if (signal % 2 == 1) {
                    System.out.println("threadB: " + signal);
                    signal = signal + 1;
                }
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        new Thread(new ThreadA()).start();
        Thread.sleep(1000);
        new Thread(new ThreadB()).start();
    }
}

// 输出:
threadA: 0
threadB: 1
threadA: 2
threadB: 3
threadA: 4

我们可以看到,使用了一个volatile变量signal来实现了“信号量”的模型。这里需要注意的是,volatile变量需要进行原子操作。

需要注意的是,signal++并不是一个原子操作,所以我们在实际开发中,会根据需要使用synchronized给它“上锁”,或者是使用AtomicInteger等原子类。

这种实现方式并不一定高效,本例只是演示信号量