文本摘要的一些研究概念
主要翻译自github,特别适合新手查看。我也是新手,看下面的翻译就知道了。
生成方式(Generation Way)
- gen-ext:提取式摘要?第一个就遇到了困难。
- gen-abs:抽象式摘要?
- gen-2stage:两个混合,压缩和混合
回归方式(Regressive Way)
-
regr-auto: Autoregressive Decoder (Pointer network) 自回归解码器,指针网络 -
regr-nonauto: Non-autoregressive Decoder (Sequence labeling) 非自回归解码器,序列标签
任务设定(Task Settings)
-
task-singleDoc: Single-document Summarization 单文本摘要 -
task-multiDoc: Multi-document Summarization 多文本摘要 -
task-senCompre:Sentence Compression 句子压缩 -
task-sci: Scientific Paper 科技论文 -
task-radiologyReport: Radiology Reports 放射科报告??这玩意怎么跑到这的? -
task-multimodal: Multi-modal Summarization 多模型摘要/多模型汇总 -
task-aspect: Aspect-based Summarization 基于方面的摘要??? -
task-opinion: Opinion Summarization 可选择摘要 -
task-review: Review Summarization 摘要综述??? -
task-meeting: Meeting-based Summarization 基于会议的摘要 -
task-conversation: Consersation-based Summarization 基于会话的摘要 -
task-medical: Medical text-related Summarization 关于医学文本摘要 -
task-covid: COVID-19 related Summarization 关于新冠病毒的摘要 -
task-query: query-based Summarization 基于查询的摘要 -
task-question: question-based Summarization 基于问答的摘要 -
task-video: Video-based Summarization 基于视频的摘要 -
task-code: Source Code Summarization 源码摘要 -
task-control: Controllable Summarization 可控制的摘要 -
task-event: Event-based Summarization 基于事件的摘要 -
task-longtext: Summarization for Long Text 长文本摘要 -
task-knowledge: Text Summarization with External Knowledge 可提取知识文本摘要 -
task-highlight: Pick out important content and emphasize 选出重要内容并强调 -
task-analysis: Model Understanding or Interpretability 模型的可理解性或可解释性 -
task-novel: Novel Chapter Generation 新章节的产生,novel在这里做形容词吧 -
task-argument: Automatic Argument Summarization 自动参数摘要
架构-Architecture (Mechanism)
-
arch-rnn: Recurrent Neural Networks (LSTM, GRU) 递归神经网络 -
arch-cnn: Convolutional Neural Networks (CNN) 循环神经网络 -
arch-transformer: Transformer 翻译器 -
arch-graph: Graph Neural Networks or Statistic Graph Models 图神经网络或者统计图模型 -
arch-gnn: Graph Neural Networks 图神经网络 -
arch-textrank: TextRank 不翻译 -
arch-att: Attention Mechanism 注意力机制 -
arch-pointer: Pointer Layer 在这里应该不是指针层,不是输入层,不是输出层,肯定就是隐藏层了。 -
arch-coverage: Coverage Mechanism 覆盖机制???
训练(Training)
-
train-sup: Supervised Learning 监督学习 -
train-unsup: Unsupervised Learning 非监督学习 -
train-weak: (impliestrain-sup): Weakly Supervised Learning 弱监督学习 -
train-multitask: Multi-task Learning 多任务学习 -
train-multilingual: Multi-lingual Learning 多语言学习 -
train-multimodal: Multi-modal Learning 多模型学习 -
train-auxiliary: Joint Training 连接学习 -
train-transfer: Cross-domain Learning, Transfer Learning, Domain Adaptation 跨领域学习,转移学习,领域适应 -
train-active: Active Learning, Boostrapping 主动学习,助人为乐?什么翻译 -
train-adver: Adversarial Learning 对抗学习 -
train-template: Template-based Summarization 基于模板的摘要 -
train-augment: Data Augmentation 数据参数 -
train-curriculum: Curriculum Learning 课程学习? -
train-lowresource: Low-resource Summarization 低资源摘要 -
train-retrieval: Retrieval-based Summarization 基于检索的摘要 -
train-meta: Meta-learning 元学习
预训练模型(Pre-trained Models)
-
pre-word2vec: word2vec -
pre-glove: GLoVe -
pre-bert: BERT -
pre-elmo: ELMo -
pre-hibert: HiBERT -
pre-bart: BART -
pre-pegasus: PEGASUS -
pre-unilm: UNILM -
pre-mass: MASS -
pre-T5: Text-to-Text Transfer Transformer -
pre-S2ORC: Pretrained model on semantic scholar open research corpus -
pre-sciBERT: Scientific paper based pre-trained model -
pre-SPECTER: Scientific Paper Embeddings using Citationinformed TransformERs
不可微函数的松弛/训练方法(Relaxation/Training Methods for Non-differentiable Functions)
这里应该是针对不可导不可微的一些处理方法。softmax曾经看到过。
-
nondif-straightthrough: Straight-through Estimator -
nondif-gumbelsoftmax: Gumbel Softmax -
nondif-minrisk: Minimum Risk Training -
nondif-reinforce: REINFORCE
对抗方法(Adversarial Methods)
-
adv-gan: Generative Adversarial Networks 生成对抗网络 -
adv-feat: Adversarial Feature Learning 对抗特征学习 -
adv-examp: Adversarial Examples 对抗样例 -
adv-train: Adversarial Training 对抗训练
潜在变量模型(Latent Variable Models)
-
latent-vae: Variational Auto-encoder 可变自动编码器 -
latent-topic: Topic Model
数据集(Dataset)
-
data-new: Constructing a new dataset 组件新的数据集 -
data-annotation: Annotation Methodology 注释方法
评价(Evaluation)
这里应该就是说你的实验出来结果,怎么评价你的文本摘要出来是符合标注还是不符合标注的,有机构有人去专门评价你的工作。
-
eval-human: Human Evaluation 人类评价 -
eval-metric-rouge: ROUGE 一个机构 -
eval-metric-bertscore: BERTScore -
eval-aspect-coherence: Coherence -
eval-aspect-redundancy: Redundancy of Summary -
eval-aspect-factuality: Factuality -
eval-aspect-abstractness: Abstractness -
eval-referenceQuality: Reference Quality -
eval-metric-learnable: Metrics are Learnable -
eval-optimize-humanJudgement: Optimization towards human judgement -
eval-reference-less: Reference-less Approach to Automatic Evaluation -
eval-metric-unsupervised: Unsupervised Automatic Evaluation
















