傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯

齿波等,傅立叶变换用正弦波作为信号的成分。

深度学习 傅里叶变换 傅里叶变换实例_信号处理


f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调

区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周

期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做

F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。

①傅立叶变换

深度学习 傅里叶变换 傅里叶变换实例_信号处理_02

②傅立叶逆变换

深度学习 傅里叶变换 傅里叶变换实例_信号处理_03


在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小。

  • 傅里叶变换属于谐波分析。
  • 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
  • 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率

是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;

*卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

  • 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT)).

傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有

着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。