摘要
Java集合中的HashMap是Java程序员使用频度最高的用于映射(键值对)处理的数据类型。本文首先讲述HashMap在java.util.map中的地位,然后分析了HashMap是什么、可以干什么以及为什么这样设计,即对应其字段、方法、性能设计等,其中针对JDK1.8新增的的变化进行了详细的说明和探讨,最后分析了HashMap的安全性以及JDK1.7与JDK1.8的实战性能比较。
1.简介
Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap、Hashtable、LinkedHashMap 和TreeMap,类继承关系如下图所示。下面针对各个实现类的特点做一些说明。

(1) HashMap。Hashmap 是一个最常用的Map,它根据键的HashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度,在遍历时取得数据的顺序是完全随机的。 HashMap最多只允许一条记录的键为null;允许多条记录的值为null;HashMap不支持线程的同步,即任一时刻可以有多个线程同时写HashMap可能会导致数据的不一致。如果需要同步,可以用 Collections的synchronizedMap方法使HashMap具有同步的能力,或者使用ConcurrentHashMap。
(2) Hashtable。Hashtable与 HashMap类似,它继承自Dictionary类,不同的是:它不允许记录的键或者值为空;它支持线程的同步,即任一时刻只有一个线程能写Hashtable,因此也导致了 Hashtable在写入时会比较慢。Hashtable实现比较重,不建议使用,性能差于ConcurrentHashMap,因为Java对ConcurrentHashMap同步的实现引入了分段锁。
(3) LinkedHashMap。LinkedHashMap 是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的。也可以在构造时用带参数,按照应用次数排序。
(4) TreeMap。TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator 遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。
通过上面的比较,我们知道了HashMap是Java map家族中的一个普通成员,鉴于它可以满足大多数场景的使用条件,所以是使用频度最高的一个。下文我们主要结合源码,从存储结构、常用方法分析、扩容以及安全性等方面深入讲解HashMap的工作原理。
2.存储结构-字段
搞清楚HashMap,首先就是知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。
从结构实现来讲,HashMap是数组+链表+红黑树(jdk1.8增加了红黑树部分)实现的,如下如所示。

这里需要讲明白两个问题,数据底层具体存储的是什么?这样的存储方式有什么优点呢?
哈希桶数组,明显它是一个Node的数组。我们来看Node[jdk 1.8]是何物。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //用来定位数组索引位置
final K key;
V value;
Node<K,V> next; //链表的下一个node
Node(int hash, K key, V value, Node<K,V> next) { ... }
public final K getKey(){ ... }
public final V getValue() { ... }
public final String toString() { ... }
public final int hashCode() { ... }
public final V setValue(V newValue) { ... }
public final boolean equals(Object o) { ... }
}
Node实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个大黑点就是一个Node对象。
(2) HashMap顾名思义就是使用哈希表来存储的,哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题。Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被hash后,得到数组下标,把数据放在对应下标元素的链表上。
例如程序执行下面代码。
map.put("美团","小美");
系统将调用"美团"这个key的 hashCode() 方法得到其 hashCode 值(每个 Java 对象都有 hashCode() 方法,都可通过该方法获得它的 hashCode 值)。得到这个对象的 hashCode 值之后,系统会根据该 hashCode 值来,再通过hash算法来定位该 键值对 的存储位置。当然hash算法计算结果越分散均匀,hash碰撞的概率就越小,map的存取效率就会越高。我们先看个例子帮助理解。
对key.hashCode再hash算法的结果)分配不同的猪圈,将hashcode相同的猪放到一个猪圈里。 查找的时候,先找到hashcode对应的猪圈,然后在逐个比较里面的小猪。 所以问题的关键就是建造多少个猪圈比较合适。 如果每个小猪的体重全部不同(考虑到毫克级别),每个都建一个猪圈,那么我们可以最快速度的找到这头猪。缺点就是,建造那么多猪圈的费用有点太高了。 如果我们按照10公斤级别进行划分,那么建造的猪圈只有几个吧,那么每个圈里的小猪就很多了。我们虽然可以很快的找到猪圈,但从这个猪圈里逐个确定那头小猪也是很累的。 所以,好的hashcode,可以根据实际情况,根据具体的需求,在时间成本(更多的猪圈,更快的速度)和空间本(更少的猪圈,更低的空间需求)之间平衡。
那么通过什么方式来控制map使得hash碰撞的概率又小,哈希桶数组(Node<K,V>[] table) 占用空间又少呢?从HashMap的默认构造函数源码可知,构造函数就是对下面两个字段进行初始化。其中table的length大小必须为2的n次方。
int threshold; // 所能容纳的key-value对极限
final float loadFactor; // 负载因子
int modCount;
int Size;
首先,Node<k,v>[] table的初始化长度length(默认值是16),loadFactor为负载因子(默认值是0.75),threshold是hashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * loadFactor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。
结合负载因子的定义公式以及上述小猪的例子可知,threshold就是在此loadFactor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择。这个0.75默认值是数学家计算出来的一个结果,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子loadFactor的值,相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。
size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。
这里存在一个问题,即使负载因子和hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响Hashmap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。本文不再对红黑树进行展开讨论,想了解更多红黑树数据结构的工作原理可以参考。
3.功能实现-方法
HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。
3.1 确定哈希桶数组索引位置
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。 HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):
方法一:
static final int hash(Object key) { //jdk1.8 & jdk1.7
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
return h & (length-1);
}
这里的hash算法本质上就是三步:取key的hashCode值;高位运算、取模运算。对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 方法一所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 方法二来计算该对象应该保存在 table 数组的哪个索引处。
这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的n 次方,这是HashMap在速度上的优化。当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。
在Java 1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低bit都参与到hash的计算中,同时不会有太大的开销。
下面举例说明下。n为table的长度。




1 public V put(K key, V value) {
2 // 对key的hashCode()做hash
3 return putVal(hash(key), key, value, false, true);
4 }
5
6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
7 boolean evict) {
8 Node<K,V>[] tab; Node<K,V> p; int n, i;
9 // tab为空则创建
10 if ((tab = table) == null || (n = tab.length) == 0)
11 n = (tab = resize()).length;
12 // 计算index,并对null做处理
13 if ((p = tab[i = (n - 1) & hash]) == null)
14 tab[i] = newNode(hash, key, value, null);
15 else {
16 Node<K,V> e; K k;
17 // 节点存在
18 if (p.hash == hash &&
19 ((k = p.key) == key || (key != null && key.equals(k))))
20 e = p;
21 // 该链为树
22 else if (p instanceof TreeNode)
23 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24 // 该链为链表
25 else {
26 for (int binCount = 0; ; ++binCount) {
27 if ((e = p.next) == null) {
28 p.next = newNode(hash, key, value, null);
29 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
30 treeifyBin(tab, hash);
31 break;
32 }
33 if (e.hash == hash &&
34 ((k = e.key) == key || (key != null && key.equals(k))))
35 break;
36 p = e;
37 }
38 }
39 // 写入
40 if (e != null) { // existing mapping for key
41 V oldValue = e.value;
42 if (!onlyIfAbsent || oldValue == null)
43 e.value = value;
44 afterNodeAccess(e);
45 return oldValue;
46 }
47 }
48 ++modCount;
49 // 超过load factor*current capacity,resize
50 if (++size > threshold)
51 resize();
52 afterNodeInsertion(evict);
53 return null;
54 } put方法[jdk 1.8]
3.3 扩容机制
扩容(resize)就是重新计算容量;向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素;当然java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组;就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。
我们分析下resize的源码,鉴于jdk1.8融入了红黑树,较复杂,为了便于理解我们仍然使用jdk1.7 的代码,好理解一些,本质上区别不大,具体区别后文再说。
1 void resize(int newCapacity) { //传入新的容量
2 Entry[] oldTable = table; //引用扩容前的Entry数组
3 int oldCapacity = oldTable.length;
4 if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了
5 threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
6 return;
7 }
8
9 Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组
10 transfer(newTable); //!!将数据转移到新的Entry数组里
11 table = newTable; //HashMap的table属性引用新的Entry数组
12 threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }
这里就是使用一个容量更大的数组来代替已有的容量小的数组;transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。
1 void transfer(Entry[] newTable) {
2 Entry[] src = table; //src引用了旧的Entry数组
3 int newCapacity = newTable.length;
4 for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
5 Entry<K,V> e = src[j]; //取得旧Entry数组的每个元素
6 if (e != null) {
7 src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
8 do {
9 Entry<K,V> next = e.next;
10 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
11 e.next = newTable[i]; //标记[1]
12 newTable[i] = e; //将元素放在数组上
13 e = next; //访问下一个Entry链上的元素
14 } while (e != null);
15 }
16 }
17 }
newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 所以key = 3, 7, 5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。

下面我们讲解下jdk1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思。n为table的长度。左边的hash1和hash2为3.1小节中代码块方法一计算的结果,右边为方法二计算的结果。

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

因此,我们在扩充HashMap的时候,不需要像jdk1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。可以看看下图为16扩充为32的resize示意图:

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是jdk1.8新增的优化点。有一点注意区别,jdk1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,jdk1.8不会倒置。有兴趣的同学可以研究下jdk1.8的resize源码,写的很赞。


1 final Node<K,V>[] resize() {
2 Node<K,V>[] oldTab = table;
3 int oldCap = (oldTab == null) ? 0 : oldTab.length;
4 int oldThr = threshold;
5 int newCap, newThr = 0;
6 if (oldCap > 0) {
7 // 超过最大值就不再扩充了,就只好随你碰撞去吧
8 if (oldCap >= MAXIMUM_CAPACITY) {
9 threshold = Integer.MAX_VALUE;
10 return oldTab;
11 }
12 // 没超过最大值,就扩充为原来的2倍
13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14 oldCap >= DEFAULT_INITIAL_CAPACITY)
15 newThr = oldThr << 1; // double threshold
16 }
17 else if (oldThr > 0) // initial capacity was placed in threshold
18 newCap = oldThr;
19 else { // zero initial threshold signifies using defaults
20 newCap = DEFAULT_INITIAL_CAPACITY;
21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22 }
23 // 计算新的resize上限
24 if (newThr == 0) {
25
26 float ft = (float)newCap * loadFactor;
27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28 (int)ft : Integer.MAX_VALUE);
29 }
30 threshold = newThr;
31 @SuppressWarnings({"rawtypes","unchecked"})
32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33 table = newTab;
34 if (oldTab != null) {
35 // 把每个bucket都移动到新的buckets中
36 for (int j = 0; j < oldCap; ++j) {
37 Node<K,V> e;
38 if ((e = oldTab[j]) != null) {
39 oldTab[j] = null;
40 if (e.next == null)
41 newTab[e.hash & (newCap - 1)] = e;
42 else if (e instanceof TreeNode)
43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44 else { // preserve order
45 Node<K,V> loHead = null, loTail = null;
46 Node<K,V> hiHead = null, hiTail = null;
47 Node<K,V> next;
48 do {
49 next = e.next;
50 // 原索引
51 if ((e.hash & oldCap) == 0) {
52 if (loTail == null)
53 loHead = e;
54 else
55 loTail.next = e;
56 loTail = e;
57 }
58 // 原索引+oldCap
59 else {
60 if (hiTail == null)
61 hiHead = e;
62 else
63 hiTail.next = e;
64 hiTail = e;
65 }
66 } while ((e = next) != null);
67 // 原索引放到bucket里
68 if (loTail != null) {
69 loTail.next = null;
70 newTab[j] = loHead;
71 }
72 // 原索引+oldCap放到bucket里
73 if (hiTail != null) {
74 hiTail.next = null;
75 newTab[j + oldCap] = hiHead;
76 }
77 }
78 }
79 }
80 }
81 return newTab;
82 }
resize源码[jdk1.8]
4.安全性
在多线程使用场景中,应该尽量避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。那么为什么说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能造成死循环。代码例子如下:使用jdk1.7的环境。
public class HashMapInfiniteLoop {
private static HashMap<Integer,String> map = new HashMap<Integer,String>(2,0.75f);
public static void main(String[] args) {
map.put(5, "C");
new Thread("Thread1") {
public void run() {
map.put(7, "B");
System.out.println(map);
};
}.start();
new Thread("Thread2") {
public void run() {
map.put(3, "A);
System.out.println(map);
};
}.start();
}
}
其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就需要进行resize。
通过设置断点让线程1和线程2同时debug到transfer方法(上文有代码飘红)的首行。注意此时两个线程已经成功添加添加数据。放开thread1的断点至transfer方法的“Entry<K,V> next = e.next;” 这一行;然后放开线程2的的断点,让线程2进行resize。结果如下图。

注意,Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。
线程一被调度回来执行。先是执行 newTalbe[i] = e; 然后是e = next,导致了e指向了key(7),而下一次循环的next = e.next导致了next指向了key(3)。


e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。
5.JDK1.8与1.7的性能对比
HashMap中,如果key经过hash算法得出的数组索引位置全部不相同,即hash算法非常好,那样的话,getKey方法的时间复杂度就是O(1),如果hash算法技术的结果碰撞非常多,假如hash算极其差,所有的hash算法结果得出的索引位置一样,那样所有的键值对都集中到一个桶中,或者在一个链表中,或者在一个红黑树中,时间复杂度分别为O(n)和O(lgn)。 JDK1.8总体性能优于JDK1.7.下面我们从两个方面用例子证明这一点。
5.1 hash较均匀的情况
为了便于测试,我们先写一个类Key,如下。
class Key implements Comparable<Key> {
private final int value;
Key(int value) {
this.value = value;
}
@Override
public int compareTo(Key o) {
return Integer.compare(this.value, o.value);
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass())
return false;
Key key = (Key) o;
return value == key.value;
}
@Override
public int hashCode() {
return value;
}
}
这个类复写了equals方法,并且提供了相当好的hashCode函数。任何一个值的hashCode都不会相同,因为直接使用value当做hashcode。为了避免频繁的GC,我将不变的Key实例缓存了起来,而不是一遍一遍的创建它们。代码如下。
public class Keys {
public static final int MAX_KEY = 10_000_000;
private static final Key[] KEYS_CACHE = new Key[MAX_KEY];
static {
for (int i = 0; i < MAX_KEY; ++i) {
KEYS_CACHE[i] = new Key(i);
}
}
public static Key of(int value) {
return KEYS_CACHE[value];
}
}
代码如下,屏蔽了扩容的情况。
static void test(int mapSize) {
HashMap<Key, Integer> map = new HashMap<Key, Integer>(mapSize);
for (int i = 0; i < mapSize; ++i) {
map.put(Keys.of(i), i);
}
long beginTime = System.nanoTime(); //获取纳秒
for (int i = 0; i < mapSize; i++) {
map.get(Keys.of(i));
}
long endTime = System.nanoTime();
System.out.println(endTime - beginTime);
}
public static void main(String[] args) {
for(int i=10;i<= 1000 0000;i*= 10){
test(i);
}
}
为了计算getKey的平均时间,我们遍历所有的get方法,计算总的时间,除以key的数量,计算一个平均值,主要用来比较,绝对值可能会受很多环境因素的影响。结果如下:
map 的size大小 | 10 | 100 | 1000 | 10000 | 10 0000 | 100 0000 | 1000 0000 |
JDK1.7 get方法平均时间(ns) | 900 | 540 | 570 | 285 | 55 | 6.9 | 8.1 |
JDK1.8 get方法平均时间(ns) | 705 | 400 | 120 | 68 | 15 | 6.25 | 6.8 |
通过观测测试结果可知,JDK1.8的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于70%。由于hash算法较均匀,JDK1.8引入的红黑树效果不明显,下面我们看看hash不均匀的的情况。
5.2 hash极不均匀的情况
假设我们又一个非常差的Key,它们所有的实例都返回相同的hashcode值。这是使用HashMap最坏的情况。代码修改如下:
class Key implements Comparable<Key> {
//...
@Override
public int hashCode() {
return 1;
}
}
仍然执行main方法,得出的结果如下表所示:
map 的size大小 | 10 | 100 | 1000 | 10000 | 10 0000 | 100 0000 | 1000 0000 |
JDK1.7 get方法平均时间(ns) | 2100 | 12960 | 3700 | 21000 | 17200 | 36000 | -- |
JDK1.8 get方法平均时间(ns) | 1960 | 3340 | 1470 | 720 | 190 | 230 | 220 |
从表中结果中可知,随着size的变大,1.7的花费时间是增长的趋势,而1.8是明显的降低趋势,并且呈现对数增长稳定。当一个桶太大的时候,HashMap会动态的将它替换成一个tree map。这话的话会将时间复杂度从O(n)降为O(logn)。hash算法均匀和不均匀所花费的时间明显也不相同,这两种情况的相对比较,可以说明一个好的hash算法的重要性。
测试环境:处理器为2.2 GHz Intel Core i7,内存为16 GB 1600 MHz DDR3,SSD硬盘,使用默认的JVM参数,运行在64位的OS X 10.10.1上。
6.小结
(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行不断的扩容。
(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。
(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。
(4) jdk1.8引入红黑树大程度优化了HashMap的性能。
(5) 还没升级jdk1.8的,现在开始升级吧。HashMap的性能提升仅仅是jdk1.8的冰山一角。
















