@可知start.S的流程为:异常向量——上电复位后进入复位异常向量——跳到启动代码处——设置处理器进入管理模式——关闭看门狗——关闭中断——设置时钟分频——关闭MMU和CACHE——进入lowlever_init.S——检查当前代码所处的位置,如果在FLASH中就将代码搬移到RAM中

 

大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。
1、Stage1start.S代码结构
u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:
(1)定义入口。由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。
(2)设置异常向量(Exception Vector)。
(3)设置CPU的速度、时钟频率及终端控制寄存器。
(4)初始化内存控制器。
(5)将ROM中的程序复制到RAM中。
(6)初始化堆栈。
(7)转到RAM中执行,该工作可使用指令ldr pc来完成。
2、Stage2 C语言代码部分
lib_arm/board.c中的start armboot是C语言开始的函数也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数只要完成如下操作:
(1)调用一系列的初始化函数。
(2)初始化Flash设备。
(3)初始化系统内存分配函数。
(4)如果目标系统拥有NAND设备,则初始化NAND设备。
(5)如果目标系统有显示设备,则初始化该类设备。
(6)初始化相关网络设备,填写IP、MAC地址等。
(7)进去命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。
3、U-Boot的启动顺序(示例,其他u-boot版本类似)
cpu/arm920t/start.S

 

@文件包含处理

#include <config.h>
@由顶层的mkconfig生成,其中只包含了一个文件:configs/<顶层makefile中6个参数的第1个参数>.h
#include <version.h>
#include <status_led.h>

/*
*************************************************************************
*
* Jump vector table as in table 3.1 in [1]
*
*************************************************************************
*/

注:ARM微处理器支持字节(8位)、半字(16位)、字(32位)3种数据类型
@向量跳转表,每条占四个字节(一个字),地址范围为0x0000 0000~@0x0000 0020
@ARM体系结构规定在上电复位后的起始位置,必须有8条连续的跳

@转指令,通过硬件实现。他们就是异常向量表。ARM在上电复位后,@是从0x00000000开始启动的,其实如果bootloader存在,在执行

@下面第一条指令后,就无条件跳转到start_code,下面一部分并没@执行。设置异常向量表的作用是识别bootloader。以后系统每当有@异常出现,则CPU会根据异常号,从内存的0x00000000处开始查表@做相应的处理

/******************************************************

;当一个异常出现以后,ARM会自动执行以下几个步骤:
;1.把下一条指令的地址放到连接寄存器LR(通常是R14).---保存位置
;2.将相应的CPSR(当前程序状态寄存器)复制到SPSR(备份的程序状态寄存器)中---保存CPSR
;3.根据异常类型,强制设置CPSR的运行模式位
;4.强制PC(程序计数器)从相关异常向量地址取出下一条指令执行,从而跳转到相应的异常处理程序中
*********************************************************/

.globl _start /*系统复位位置,整个程序入口*/
@_start是GNU汇编器的默认入口标签,.globl将_start声明为外部程序可访问的标签,.globl是GNU汇编的保留关键字,前面加点是GNU汇编的语法
_start: b       start_code   @0x00
@ARM上电后执行的第一条指令,也即复位向量,跳转到start_code

@reset用b,就是因为reset在MMU建立前后都有可能发生
@其他的异常只有在MMU建立之后才会发生
ldr pc, _undefined_instruction /*未定义指令异常,0x04*/
   ldr pc, _software_interrupt   /*软中断异常,0x08*/
   ldr pc, _prefetch_abort    /*内存操作异常,0x0c*/
   ldr pc, _data_abort     /*数据异常,0x10*/
   ldr pc, _not_used     /*未适用,0x14*/
   ldr pc, _irq      /*慢速中断异常,0x18*/
   ldr pc, _fiq      /*快速中断异常,0x1c*/

@对于ARM数据从内存到CPU之间的移动只能通过L/S指令,如:ldr r0,0x12345678为把0x12345678内存中的数据写到r0中,还有一个就是ldr伪指令,如:ldr r0,=0x12345678为把0x12345678地址写到r0中,mov只能完成寄存器间数据的移动,而且立即数长度限制在8位

_undefined_instruction: .word undefined_instruction
_software_interrupt: .word software_interrupt
_prefetch_abort: .word prefetch_abort
_data_abort: .word data_abort
_not_used: .word not_used
_irq:   .word irq
_fiq:   .word fiq
@.word为GNU ARM汇编特有的伪操作,为分配一段字内存单元(分配的单元为字对齐的),可以使用.word把标志符作为常量使用。如_fiq:.word fiq即把fiq存入内存变量_fiq中,也即是把fiq放到地址_fiq中。

.balignl 16,0xdeadbeef
@.balignl是.balign的变体

@ .align伪操作用于表示对齐方式:通过添加填充字节使当前位置

@满足一定的对齐方式。.balign的作用同.align。
@ .align {alignment} {,fill} {,max}
@ 其中:alignment用于指定对齐方式,可能的取值为2的次

@幂,缺省为4。fill是填充内容,缺省用0填充。max是填充字节@数最大值,如果填充字节数超过max, 就不进行对齐,例如:
@ .align 4 /* 指定对齐方式为字对齐 */

【参考好野人的窝,于关u-boot中的.balignl 16,0xdeadbeef的理解http://haoyeren.blog.sohu.com/84511571.html

/*
*************************************************************************
*
* Startup Code (called from the ARM reset exception vector)
*
* do important init only if we don't start from memory!
* relocate armboot to ram
* setup stack
* jump to second stage
*
*************************************************************************

@保存变量的数据区,保存一些全局变量,用于BOOT程序从FLASH拷贝@到RAM,或者其它的使用。
@还有一些变量的长度是通过连接脚本里得到,实际上由编译器算出

@来的

_TEXT_BASE:

@因为linux开始地址是0x30000000,我这里是64M SDRAM,所以@TEXT_BASE = 0x33F80000 ???
.word TEXT_BASE /*uboot映像在SDRAM中的重定位地址*/
@TEXT_BASE在开发板相关的目录中的config.mk文档中定义, 他定

@义了代码在运行时所在的地址, 那么_TEXT_BASE中保存了这个地

@址(这个TEXT_BASE怎么来的还不清楚)

.globl _armboot_start
_armboot_start:
.word _start
@用_start来初始化_armboot_start。(为什么要这么定义一下还不明白)

/*
* These are defined in the board-specific linker script.
*/
@下面这些是定义在开发板目录链接脚本中的

.globl _bss_start   
_bss_start:
.word __bss_start
@__bss_start定义在和开发板相关的u-boot.lds中,_bss_start保存的是__bss_start标号所在的地址。

.globl _bss_end
_bss_end:
.word _end
@同上,这样赋值是因为代码所在地址非编译时的地址,直接取得该标号对应地址。

@中断的堆栈设置

#ifdef CONFIG_USE_IRQ
/* IRQ stack memory (calculated at run-time) */
.globl IRQ_STACK_START
IRQ_STACK_START:
.word 0x0badc0de

/* IRQ stack memory (calculated at run-time) */
.globl FIQ_STACK_START
FIQ_STACK_START:
.word 0x0badc0de
#endif

/*
* the actual start code
*/
@复位后执行程序
@真正的初始化从这里开始了。其实在CPU一上电以后就是跳到这里执行的
reset:
/*
* set the cpu to SVC32 mode
*/
@更改处理器模式为管理模式
@对状态寄存器的修改要按照:读出-修改-写回的顺序来执行
@
    31 30 29 28 ---   7   6  -   4    3   2   1   0
    N Z C V       I   F       M4 M3 M2 M1 M0
                                  0   0   0 0   0     User26 模式
                                  0   0   0 0   1     FIQ26 模式
                                  0   0   0 1   0     IRQ26 模式
                                  0   0   0 1   1     SVC26 模式
                                  1   0   0 0   0     User 模式
                                  1   0   0 0   1     FIQ 模式
                                  1   0   0 1   0     IRQ 模式
                                  1   0   0 1   1     SVC 模式
                                  1   0   1 1   1     ABT 模式
                                  1   1   0 1   1     UND 模式
                                  1   1   1 1   1     SYS 模式

mrs r0,cpsr
@将cpsr的值读到r0中
bic r0,r0,#0x1f
@清除M0~M4
orr r0,r0,#0xd3
@禁止IRQ,FIQ中断,并将处理器置于管理模式
msr cpsr,r0

@以下是点灯了,这里应该会牵涉到硬件设置,移植的时候应该可以不要
bl coloured_LED_init
bl red_LED_on

@针对AT91RM9200进行特殊处理
#if defined(CONFIG_AT91RM9200DK) || defined(CONFIG_AT91RM9200EK)
/*
* relocate exception table
*/
ldr r0, =_start
ldr r1, =0x0
mov r2, #16
copyex:
subs r2, r2, #1
@sub带上了s用来更改进位标志,对于sub来说,若发生借位则C标志置0,没有则为1,这跟adds指令相反!要注意。
ldr r3, [r0], #4
str r3, [r1], #4
bne copyex
#endif

@针对S3C2400和S3C2410进行特殊处理
@CONFIG_S3C2400、CONFIG_S3C2410等定义在include/configs/下不同开发板的头文件中
#if defined(CONFIG_S3C2400) || defined(CONFIG_S3C2410)
/* turn off the watchdog */

@关闭看门狗定时器的自动复位功能并屏蔽所有中断,上电后看门狗为开,中断为关
# if defined(CONFIG_S3C2400)
# define pWTCON 0x15300000
# define INTMSK 0x14400008 /* Interupt-Controller base addresses */
# define CLKDIVN 0x14800014 /* clock divisor register */
#else @s3c2410的配置
# define pWTCON 0x53000000
@pWTCON定义为看门狗控制寄存器的地址(s3c2410和s3c2440相同)
# define INTMSK 0x4A000008 /* Interupt-Controller base addresses */
@INTMSK定义为主中断屏蔽寄存器的地址(s3c2410和s3c2440相同)
# define INTSUBMSK 0x4A00001C
@INTSUBMSK定义为副中断屏蔽寄存器的地址(s3c2410和s3c2440相同)
# define CLKDIVN 0x4C000014 /* clock divisor register */
@CLKDIVN定义为时钟分频控制寄存器的地址(s3c2410和s3c2440相同)
# endif
@至此寄存器地址设置完毕

ldr     r0, =pWTCON
mov     r1, #0x0
str     r1, [r0]
@对于S3C2440和S3C2410的WTCON寄存器的[0]控制允许或禁止看门狗定时器的复位输出功能,设置为“0”禁止复位功能。

/*
* mask all IRQs by setting all bits in the INTMR - default
*/
mov r1, #0xffffffff
ldr r0, =INTMSK
str r1, [r0]
# if defined(CONFIG_S3C2410)
ldr r1, =0x3ff @2410好像应该为7ff才对(不理解uboot为何是这个数字)
ldr r0, =INTSUBMSK
str r1, [r0]
# endif
@对于S3C2410的INTMSK寄存器的32位和INTSUBMSK寄存器的低11位每一位对应一个中断,相应位置“1”为不响应相应的中断。对于S3C2440的INTSUBMSK有15位可用,所以应该为0x7fff了。

/* FCLK:HCLK:PCLK = 1:2:4 */
/* default FCLK is 120 MHz ! */
ldr r0, =CLKDIVN
mov r1, #3
str r1, [r0]
@时钟分频设置,FCLK为核心提供时钟,HCLK为AHB(ARM920T,内存@控制器,中断控制器,LCD控制器,DMA和主USB模块)提供时钟,@PCLK为APB(看门狗、IIS、I2C、PWM、MMC、ADC、UART、GPIO、@RTC、SPI)提供时钟。分频数一般选择1:4:8,所以HDIVN=2,PDIVN=1,@CLKDIVN=5,这里仅仅是配置了分频寄存器,关于MPLLCON的配置肯@定写在lowlevel_init.S中了
@归纳出CLKDIVN的值跟分频的关系:
@0x0 = 1:1:1 , 0x1 = 1:1:2 , 0x2 = 1:2:2 , 0x3 = 1:2:4, 0x4 = 1:4:4, 0x5 =1:4:8, 0x6 = 1:3:3,
0x7 = 1:3:6
@S3C2440的输出时钟计算式为:Mpll=(2*m*Fin)/(p*2^s)
S3C2410的输出时钟计算式为:Mpll=(m*Fin)/(p*2^s)
m=M(the value for divider M)+8;p=P(the value for divider P)+2
M,P,S的选择根据datasheet中PLL VALUE SELECTION TABLE表格进行,

我的开发板晶振为16.9344M,所以输出频率选为:399.65M的话M=0x6e,P=3,S=1
@s3c2440增加了摄像头,其FCLK、HCLK、PCLK的分频数还受到CAMDIVN[9](默认为0),CAMDIVN[8](默认为0)的影响
#endif /* CONFIG_S3C2400 || CONFIG_S3C2410 */

/*
* we do sys-critical inits only at reboot,
* not when booting from ram!
*/
@选择是否初始化CPU
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
bl cpu_init_crit
@执行CPU初始化,BL完成跳转的同时会把后面紧跟的一条指令地址保存到连接寄存器LR(R14)中。以使子程序执行完后正常返回。
#endif

@调试阶段的代码是直接在RAM中运行的,而最后需要把这些代码 @固化到Flash中,因此U-Boot需要自己从Flash转移到
@RAM中运行,这也是重定向的目的所在。
@通过adr指令得到当前代码的地址信息:如果U-boot是从RAM @开始运行,则从adr,r0,_start得到的地址信息为
@r0=_start=_TEXT_BASE=TEXT_BASE=0x33F80000; @如果U-boot从Flash开始运行,即从处理器对应的地址运行,
@则r0=0x0000,这时将会执行copy_loop标识的那段代码了。
@ _TEXT_BASE 定义在board/smdk2410/config.mk中

#ifndef CONFIG_SKIP_RELOCATE_UBOOT
relocate:    /* relocate U-Boot to RAM    */
adr r0, _start /* r0 <- current position of code   */
ldr r1, _TEXT_BASE /* test if we run from flash or RAM */
cmp     r0, r1 /* don't reloc duringdebug         */
beq     stack_setup
ldr r2, _armboot_start
@_armboot_start为_start地址
ldr r3, _bss_start
@_bss_start为数据段地址
sub r2, r3, r2 /* r2 <- size ofarmboot            */
add r2, r0, r2 /* r2 <- source endaddress         */

copy_loop:
ldmia r0!, {r3-r10} /* copy from source address [r0]    */

@从源地址[r0]读取8个字节到寄存器,每读一个就更新一次r0地址
@ldmia:r0安字节增长
stmia r1!, {r3-r10} /* copy to   target address [r1]   */
@LDM(STM)用于在寄存器所指的一片连续存储器和寄存器列表的寄存@器间进行数据移动,或是进行压栈和出栈操作。
@格式为:LDM(STM){条件}{类型}基址寄存器{!},寄存器列表{^}
@对于类型有以下几种情况: IA 每次传送后地址加1,用于移动数

@据块
    IB 每次传送前地址加1,用于移动数据块
    DA 每次传送后地址减1,用于移动数据块
    DB 每次传送前地址减1,用于移动数据块
    FD 满递减堆栈,用于操作堆栈(即先移动指针再操作数据,相当于DB)
    ED 空递减堆栈,用于操作堆栈(即先操作数据再移动指针,相当于DA)
    FA 满递增堆栈,用于操作堆栈(即先移动指针再操作数据,相当于IB)
    EA 空递增堆栈,用于操作堆栈(即先操作数据再移动指针,相当于IA)
(这里是不是应该要涉及到NAND或者NOR的读写?没有看出来)

cmp r0, r2   /* until source end addreee[r2]    */
ble copy_loop
#endif /* CONFIG_SKIP_RELOCATE_UBOOT */

/* Set up thestack          */
@初始化堆栈
stack_setup:

ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot   */

@获取分配区域起始指针,

sub r0, r0, #CONFIG_SYS_MALLOC_LEN /* mallocarea    */

@CFG_MALLOC_LEN=128*1024+CFG_ENV_SIZE=128*1024+0x1@0000=192K

sub r0, r0, #CONFIG_SYS_GBL_DATA_SIZE /*bdinfo   */

@CFG_GBL_DATA_SIZE    128---size in bytesreserved for initial data 用来存储开发板信息
#ifdef CONFIG_USE_IRQ

@这里如果需要使用IRQ, 还有给IRQ保留堆栈空间, 一般不使用.
sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
sub sp, r0, #12 /* leave 3 words for abort-stack    */

@该部分将未初始化数据段_bss_start----_bss_end中的数据 @清零
clear_bss:
ldr r0, _bss_start /* find start of bsssegment        */
ldr r1, _bss_end /* stophere                       */
mov r2, #0x00000000 /*clear                           */

clbss_l:str r2, [r0] /* clearloop...                   */
add r0, r0, #4
cmp r0, r1
ble clbss_l

@跳到阶段二C语言中去
ldr pc, _start_armboot

_start_armboot: .word start_armboot
@start_armboot在/lib_arm/中,到这里因该是第一阶段已经完成了吧,下面就要去C语言中执行第二阶段了吧

/*
*************************************************************************
*
* CPU_init_critical registers
*
* setup important registers
* setup memory timing
*
*************************************************************************
*/
@CPU初始化

@在“relocate: /* relocate U-Boot to RAM */ ”之前被调用

#ifndef CONFIG_SKIP_LOWLEVEL_INIT
cpu_init_crit:     
/*
* flush v4 I/D caches
*/
@初始化CACHES
mov r0, #0
mcr p15, 0, r0, c7, c7, 0 /* flush v3/v4 cache */
mcr p15, 0, r0, c8, c7, 0 /* flush v4 TLB */

/*
* disable MMU stuff and caches
*/
@关闭MMU和CACHES
mrc p15, 0, r0, c1, c0, 0
bic r0, r0, #0x00002300 @ clear bits 13, 9:8 (--V- --RS)
bic r0, r0, #0x00000087 @ clear bits 7, 2:0 (B--- -CAM)
orr r0, r0, #0x00000002 @ set bit 2 (A) Align
orr r0, r0, #0x00001000 @ set bit 12 (I) I-Cache
mcr p15, 0, r0, c1, c0, 0
@对协处理器的操作还是看不懂,暂时先不管吧,有时间研究一下ARM技术手册的协处理器部分。

/*
* before relocating, we have to setup RAM timing
* because memory timing is board-dependend, you will
* find a lowlevel_init.S in your board directory.
*/
@初始化RAM时钟,因为内存是跟开发板密切相关的,所以这部分在/开发板目录/lowlevel_init.S中实现
mov ip, lr
@保存LR,以便正常返回,注意前面是通过BL跳到cpu_init_crit来的。
@(ARM9有37个寄存器,ARM7有27个)
37个寄存器=7个未分组寄存器(R0~R7)+ 2×(5个分组寄存器R8~R12)+6×2(R13=SP,R14=lr 分组寄存器) + 1(R15=PC) +1(CPSR) + 5(SPSR)
用途和访问权限:
R0~R7:USR(用户模式)、fiq(快速中断模式)、irq(中断模式)、svc(超级用法模式)、abt、und
R8~R12:R8_usr~R12_usr(usr,irq,svc,abt,und)
         R8_fiq~R12_fiq(fiq)
R11=fp
R12=IP(从反汇编上看,fp和ip一般用于存放SP的值)
R13~R14:R13_usr R14_usr(每种模式都有自己的寄存器)
SP ~lr :R13_fiq R14_fiq
          R13_irq R14_irq
          R13_svc R14_svc
          R13_abt R14_abt
          R13_und R14_und
R15(PC):都可以访问(即PC的值为当前指令的地址值加8个字节)
R16    :((Current Program Status Register,当前程序状态寄存器))
           SPSR_fiq,SPSR_irq,SPSR_abt,SPSR_und(USR模式没有)

#if defined(CONFIG_AT91RM9200EK)

#else
bl lowlevel_init

@在重定向代码之前,必须初始化内存时序,因为重定向时需要将@flash中的代码复制到内存中lowlevel_init在@/board/smdk2410/lowlevel_init.S中。               

#endif
mov lr, ip
mov pc, lr
@返回到主程序

#endif /* CONFIG_SKIP_LOWLEVEL_INIT */

/*
*************************************************************************
*
* Interrupt handling
*
*************************************************************************
*/
@这段没有看明白,不过好像跟移植关系不是很大,先放一放。
@
@ IRQ stack frame.
@
#define S_FRAME_SIZE 72

#define S_OLD_R0 68
#define S_PSR 64
#define S_PC 60
#define S_LR 56
#define S_SP 52

#define S_IP 48
#define S_FP 44
#define S_R10 40
#define S_R9 36
#define S_R8 32
#define S_R7 28
#define S_R6 24
#define S_R5 20
#define S_R4 16
#define S_R3 12
#define S_R2 8
#define S_R1 4
#define S_R0 0

#define MODE_SVC 0x13
#define I_BIT 0x80

/*
* use bad_save_user_regs for abort/prefetch/undef/swi ...
* use irq_save_user_regs / irq_restore_user_regs for IRQ/FIQ handling
*/

.macro bad_save_user_regs
sub sp, sp, #S_FRAME_SIZE
stmia sp, {r0 - r12}   @ Calling r0-r12
ldr r2, _armboot_start
sub r2, r2, #(CONFIG_STACKSIZE)
sub r2, r2, #(CONFIG_SYS_MALLOC_LEN)
sub r2, r2, #(CONFIG_SYS_GBL_DATA_SIZE+8) @ set base 2 words into abort stack
ldmia r2, {r2 - r3}   @ get pc, cpsr
add r0, sp, #S_FRAME_SIZE @ restore sp_SVC

add r5, sp, #S_SP
mov r1, lr
stmia r5, {r0 - r3}   @ save sp_SVC, lr_SVC, pc, cpsr
mov r0, sp
.endm

.macro irq_save_user_regs
sub sp, sp, #S_FRAME_SIZE
stmia sp, {r0 - r12}   @ Calling r0-r12
add     r7, sp, #S_PC
stmdb   r7, {sp,lr}^                  @ Calling SP, LR
str     lr, [r7,#0]                   @ Save calling PC
mrs     r6, spsr
str     r6, [r7,#4]                   @ Save CPSR
str     r0, [r7,#8]                   @ Save OLD_R0
mov r0, sp
.endm

.macro irq_restore_user_regs
ldmia sp, {r0 - lr}^   @ Calling r0 - lr
mov r0, r0
ldr lr, [sp, #S_PC]   @ Get PC
add sp, sp, #S_FRAME_SIZE
subs pc, lr, #4   @ return & move spsr_svc into cpsr
.endm

.macro get_bad_stack
ldr r13, _armboot_start @ setup our mode stack
sub r13, r13, #(CONFIG_STACKSIZE)
sub r13, r13, #(CONFIG_SYS_MALLOC_LEN)
sub r13, r13, #(CONFIG_SYS_GBL_DATA_SIZE+8) @ reserved a couple spots in abortstack

str lr, [r13]   @ save caller lr / spsr
mrs lr, spsr
str     lr, [r13, #4]

mov r13, #MODE_SVC   @ prepare SVC-Mode
@ msr spsr_c, r13
msr spsr, r13
mov lr, pc
movs pc, lr
.endm

.macro get_irq_stack   @ setup IRQ stack
ldr sp, IRQ_STACK_START
.endm

.macro get_fiq_stack   @ setup FIQ stack
ldr sp, FIQ_STACK_START
.endm

/*********************************************************
* exception handlers
********************************************************/
@异常向量处理
@每一个异常向量处其实只放了一条跳转指令(因为每个异常向量只 @有4个字节不能放太多的程序),跳到相应的异常处理程序中。
.align 5
undefined_instruction:
get_bad_stack
bad_save_user_regs
bl do_undefined_instruction

.align 5
software_interrupt:
get_bad_stack
bad_save_user_regs
bl do_software_interrupt

.align 5
prefetch_abort:
get_bad_stack
bad_save_user_regs
bl do_prefetch_abort

.align 5
data_abort:
get_bad_stack
bad_save_user_regs
bl do_data_abort

.align 5
not_used:
get_bad_stack
bad_save_user_regs
bl do_not_used

#ifdef CONFIG_USE_IRQ

.align 5
irq:
get_irq_stack
irq_save_user_regs
bl do_irq
irq_restore_user_regs

.align 5
fiq:
get_fiq_stack
/* someone ought to write a more effiction fiq_save_user_regs */
irq_save_user_regs
bl do_fiq
irq_restore_user_regs

#else

.align 5
irq:
get_bad_stack
bad_save_user_regs
bl do_irq

.align 5
fiq:
get_bad_stack
bad_save_user_regs
bl do_fiq

#endif /*CONFIG_USE_IRQ*/
@可知start.S的流程为:异常向量——上电复位后进入复位异常向量——跳到启动代码处——设置处理器进入管理模式——关闭看门狗——关闭中断——设置时钟分频——关闭MMU和CACHE——进入lowlever_init.S——检查当前代码所处的位置,如果在FLASH中就将代码搬移到RAM中

 

 


 


 

根据board/samsumg/smdk2410下的u-boot.lds这个链接脚本知道u-boot启动的第一阶段函数是在cpu/arm920t/start.S。完成的功能主要包括

1:cpu自身的初始化:包括MMU,catch,时钟系统,SDRAM控制系统的初始话。

2:重定位:把自己从flash中搬到SDRAM 中

3:分配堆栈空间,设置堆栈指针

4:清零BSS数据段

5:跳转到第二阶段入口函数。

具体分析如下:

.globl _start

@设置异常向量表,其中_start是GNU 汇编的默认入口标签。注意ldr r0,0x1234是把0X1234中的内容写到R0中,ldrr0,=0x1234,是将1234这个值写到R0中,以及ADR 是用来加载地址。
_start: b       start_code 
ldr     pc, _undefined_instruction
ldr     pc, _software_interrupt
ldr     pc, _prefetch_abort
ldr     pc, _data_abort
ldr     pc, _not_used
ldr     pc, _irq
ldr     pc, _fiq

@.word为GUN 汇编分配一段字内存单元,下面几句话相当于是C语言中的变量名和变量值。
_undefined_instruction: .word undefined_instruction
_software_interrupt:    .word software_interrupt
_prefetch_abort:        .word prefetch_abort
_data_abort:           .word data_abort
_not_used:             .word not_used
_irq:                  .word irq
_fiq:                  .word fiq

@全局符号定义

_TEXT_BASE:
.word   TEXT_BASE@在board/samsumg/smdk2410中定义为3ff80000..即UBOOT映像文件所在地址
.globl _armboot_start
_armboot_start:
.word _start
@下面主要在u-boot.lds链接脚本中定义
.globl _bss_start
_bss_start:
.word __bss_start

.globl _bss_end
_bss_end:
.word _end

@下面主要为start_code 的实现

start_code:
@设置当前状态为SVC32模式
mrs     r0,cpsr   
bic     r0,r0,#0x1f   @相应位置清零
orr     r0,r0,#0xd3  @相应位置1,同时关闭IRQ,FIQ。
msr     cpsr,r0   

@关闭看门狗,关中断,设置时钟分频控制寄存器。pWTCON是看门狗控制寄存器,INTMSK是中断屏蔽寄存器,INTSUBMSK是中断子屏蔽寄存器,CLKDIVN是clock divisor register,用来设置FCLK,HCLK,PCLK三者的比例。

         #ifdefined(CONFIG_S3C2400) || defined(CONFIG_S3C2410)
/* turn off the watchdog */

# if defined(CONFIG_S3C2400)
#  definepWTCON               0x15300000
#  defineINTMSK               0x14400008      /* Interupt-Controller base addresses*/
#  define CLKDIVN      0x14800014      /* clock divisor register */
#else
#  definepWTCON               0x53000000
#  defineINTMSK               0x4A000008      /* Interupt-Controller base addresses*/
#  define INTSUBMSK     0x4A00001C
#  define CLKDIVN      0x4C000014      /* clock divisor register */
# endif
@关看门狗
ldr     r0, =pWTCON
mov     r1, #0x0
str     r1, [r0]

         @关闭主中断屏蔽寄存器
mov     r1, #0xffffffff
ldr     r0, =INTMSK
str     r1, [r0]
# if defined(CONFIG_S3C2410)

      @关闭副中断屏蔽寄存器

       ldr     r1, =0x3ff
ldr     r0, =INTSUBMSK
str     r1, [r0]
# endif

     @设置时钟分频控制寄存器。
 /* FCLK:HCLK:PCLK = 1:2:4 * /FCLK为核心提供时钟,HCLK为AHB(ARM920T,内存控制器,中断控制器,LCD控制器,DMA和主USB模块)提供时钟,PCLK为APB(看门狗、IIS、I2C、PWM、MMC、ADC、UART、GPIO、RTC、SPI)提供时钟
/* default FCLK is 120 MHz ! */

ldr     r0, =CLKDIVN
mov     r1, #3
str     r1, [r0]
#endif  /* CONFIG_S3C2400 || CONFIG_S3C2410 */

@执行CPU初始话。

176 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
178       bl     cpu_init_crit @如果没有定义CONFIG_SKIP_LOELEVEL_INIT,则执行cpu_init_crit.见236-268下。
179  #endif

@重新定位u-boot到SDRAM中

#ifndef CONFIG_SKIP_RELOCATE_UBOOT
181relocate:                              /* relocate U-Boot toRAM           */
182         adr    r0,_start              @通过adr指令得到当前代码的地址信息:如果U-boot是从RAM开始运行,则从adr,r0,_start得到的地址信息为 r0=_start=_TEXT_BASE=TEXT_BASE=0x3ff80000;如果U-boot从Flash开始运行,即从处理器对应的地址运行,则r0=0x0000,这时将会执行copy_loop标识的那段代码了
183         ldr    r1, _TEXT_BASE          /* test ifwe run from flash or RAM */
184         cmp    r0,r1                 /* don't reloc during debug         */
185         beq    stack_setup   @如果r0等于r1,跳过重定位代码 。
186
187         ldr    r2, _armboot_start@_start的内容写入r2
188         ldr    r3, _bss_start  @_bss_start的内容写入r3
189         sub    r2, r3, r2          @计算armboot所占字节大小
190         add    r2, r0,r2            @armboot结束地址
191 @实现从flash中拷贝到_TEXT_BASE(0x3ff80000)所在的地址中去。
192 copy_loop:
193         ldmia   r0!,{r3-r10}           /* copyfrom source address [r0]    */
194         stmia   r1!,{r3-r10}           /* copyto   target address [r1]    */
195         cmp    r0,r2                 /* until source end addreee [r2]    */
196         ble    copy_loop
197 #endif  /* CONFIG_SKIP_RELOCATE_UBOOT */
198
199   @初始化堆栈                                               */
200 stack_setup:
201         ldr    r0, _TEXT_BASE      @3ff80000 
202         sub    r0, r0, #CONFIG_SYS_MALLOC_LEN  @ 向下内存分配,为malloc预留分配空间
203         sub    r0, r0, #CONFIG_SYS_GBL_DATA_SIZE@全局数据结构空间
204 #ifdef CONFIG_USE_IRQ
205         sub    r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)@ 为IRQ,FIQ分配空间
206 #endif
207         sub    sp, r0, #12           @为abort异常预留12字节的空间,并将当前的地址赋给sp,这样就为内存栈设置好了,之后如果在u-boot中运行程序时需要使用栈的时候就从这里开始。
208 @清空数据段
209 clear_bss:
210         ldr    r0, _bss_start          /* findstart of bss segment        */
211         ldr    r1, _bss_end           /* stophere                       */
212         mov    r2, #0x00000000         /*clear                           */
213
214 clbss_l:str     r2,[r0]               /* clearloop...                   */
215         add    r0, r0, #4
216         cmp    r0, r1
217         ble    clbss_l
219         ldr    pc, _start_armboot@跳转到_start_armboot,也就是函数 start_armboot,此函数存放在u-boot-2009.03/lib_arm/board.c,这样就到了u-boot的第二阶段了。
220
221 _start_armboot: .word start_armboot

@执行cpu_init_crit.

236 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
237 cpu_init_crit:
238         /*
239          * flush v4 I/D caches
240          */
241         mov     r0, #0
242         mcr     p15, 0,r0, c7, c7, 0   @使Icaches和Dcaches无效
243         mcr     p15, 0,r0, c8, c7, 0   @使TLB失效
244
245      关闭mmu和cache,这里249行,将13,9,8bit清零(13—异常向量表基地址:0x0, 9—DisableSystem Protection, 8—Disable ROM Protection),250行,将7,2,1,0bit清零(7—为0 的时候表示小端字节序,2-- Data Cache Disabled,1-- Alignment Fault checking disabled,0—为0的话MMU disabled),251行,将bit 1 设置为1表示Fault checking enabled,252行,将bit 12设置为1表示使能 I-Cache。

@MRC指令的格式为:
@MRC{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。
@MRC指令用于将协处理器寄存器中的数据传送到ARM处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器为ARM处理器的寄存器,源寄存器1和源寄存器2均为协处理器的寄存器。  指令示例: MRC   P3,3,R0,C4,C5,6   ;该指令将协处理器P3的寄存器中的数据传送到ARM处理器寄存器中。

248         mrc    p15, 0, r0, c1, c0, 0
249         bic     r0, r0,#0x00002300     @ clear bits 13, 9:8 (--V- --RS)
250         bic     r0, r0,#0x00000087     @ clear bits 7, 2:0 (B--- -CAM)
251         orr     r0, r0,#0x00000002     @ set bit 2 (A) Align
252         orr     r0, r0,#0x00001000     @ set bit 12 (I) I-Cache
253         mcr     p15, 0,r0, c1, c0, 0
254       

260         mov    ip, lr @保存当前链接寄存器中的值
261
262        bl      lowlevel_init @ @u-boot-2009.03/board/samsung/smdk2410/lowlevel_init.S ,主要是初始话存储控制器件,共13个。只需要设置BWSCON和BANKCONx(x为0-5),而BANK6,BANK7接SDRAM,除了设置 BWSCON和BANKCONx(x为6,7),还需要设置其他四个寄存器,而这13个寄存器的地址是连续的,BWSCON是第一个寄存器
263
264         mov    lr, ip
265         mov    pc, lr @返回执行relocate。

266 #endif /* CONFIG_SKIP_LOWLEVEL_INIT */

@以下就是各种中断的处理。

 @.macro伪操作符标识宏定义的开始,.endm标识宏定义的结束。二者包含的一段代码,称为宏定义体,这样在程序中就可通过宏指令多次调用该代码段。格式:
.macro macroname {parameter{,parameter}...}
...
.endm
宏的参数可直接使用斜线“\字符”来引用,如下“\reg”所示。

  @略过     

这里重声一下ldr和b的区别:

b跳转指令是个相对跳转指令直接向PC寄存器赋值,依赖当前PC的值,这使得B指令不依赖代码存储的位置,被称为位置无关码

ldr是从内存中的某个位置读出数据,并给PC赋值这个位置的地址是当前PC寄存器的值加上偏移值