设数据速率为100bps,数据调制采用2FSK方式,频率间隔为100Hz。跳频频点为32个,调频频率间隔为50Hz,调频速率为50跳/S。设以伪随机整数控制跳频的载频,接收机中解跳所用的本地恢复载波理想地跟踪了发送载波频率变化。新到设为AWGN信道。
该系统属于一个慢跳频扩频系统。跳频输出信号带宽约为Hz,其等效低通信号频率变化范围为-800——800Hz。为了使仿真观测范围达到-2000——2000Hz,信号采样率应设置为4000次/s,所以每一个传输数据码元的仿真采样点数为40点。跳频速率为50跳/s,故每跳持续时间为0.02s,对应的采样点数为80点。伪随机码采用m序列,也可采用Gold序列。将伪随机码中每5bit转换为一个0——31的随机整数,以控制跳频载波的输出频率。由于假设接收机伪随机码是理想同步的,且信道没有时延,因此在模型中可直接用发送方的伪随机码作为接收机恢复的伪随机序列
根据以上分析建立传输测试模型。二进制信源数据采用Bernoulli Binary Generator产生,模块中采样时间设为0.01s。然后用M-FSK Modulator Baseband模块完成2FSK调制,其参数设置为:调制元数为2,频率间隔为100Hz,每个符号的采样点数为40,这样调制输出的将是采样率为4000次/s的信号。由PN序列转换得到的0-31随机整数由子系统Subsystem PN Sequence产生,子系统中,PN序列模块的采样时间间隔设置为1/250s,并设置按帧输出,每帧5个样值(即5个码片),将帧格式转换为基于取样的信号后,用Bit to Integer Converter将每5码片转换为一个随机整数输出,作为跳频载波频率点的控制信号。输出随机整数的速率是250/5=50个/s,等于跳频速率。跳频器采用M-FSK Modulator Baseband1完成,其设置参数是:调制元数32,输入数据类型为整型, 频率间隔为50,每符号的采样点数为80,这样该模块将输出在32个频点上跳频速率为50次/s的伪随机跳频载波信号。它是复信号,采样率与2FSK信息调制的输出信号相同,为4000次/s。信息调制输出和跳频载波进行相乘以实现跳频扩频。
扩频输出经过AWGN信道并加入一个150Hz的单频正弦波作为干扰源。
在接收端,本地跳频载波是发送跳频载波信号的共轭信号,以相乘完成解跳后,用M-FSK Demodulator Baseband完成2FSK信息解跳,其设置与信息调制器对应。与发送数据相比,解调输出数据将会延迟一个码元间隔时间(0.01s)。系统中可对比观察收发数据波形,测试误码率,并用频谱仪观测跳频,信道传输以及解跳,解调前后的信号频谱,如图3-5。
图3跳频前信号频谱
图4 跳频后信号频谱