MATLAB编程实现,BP神经网络用于系统辨识的问题?

谷歌人工智能写作项目:小发猫

神经网络分析工具 神经网络辨识_系统辨识

系统辨识的方法

经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等人工神经网络法名词解释,人工神经网络法的含义。

其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。

但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GIS)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GIS),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—IS)和随机逼近算法等。

经典的系统辨识方法还存在着一定的不足:(1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。

随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线性系统辨识方法。

主要有:1、集员系统辨识法在1979年集员辨识首先出现于Fogel撰写的文献中,1982年Fogel和Huang又对其做了进一步的改进。

集员辨识是假设在噪声或噪声功率未知但有界UBB(UnknownButBounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。

不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。

2、多层递阶系统辨识法多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。

3、神经网络系统辨识法由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。

与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;(2)可以对本质非线性系统进行辨识;(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;(5)神经网络也是系统的一个物理实现,可以用在在线控制。

4、模糊逻辑系统辨识法模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。

模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。

模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。

5、小波网络系统辨识法小波网络是在小波分解的基础上提出的一种前馈神经网络口,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。

小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。

小波理论在系统辨识中,尤其在非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。

只知道输入输出的数据,不知道系统传递函数,怎么用PID神经网络进行系统辨识得到系统传递函数,请高手帮忙

求传递函数跟用不用神经网络或PID没关系,输入输出的互功率谱/输入的自功率谱=传递函数,输入输出的互功率谱由输入输出的互相关经FFT得到,同样输入的自功率谱由输入的自相关经FFT得到。

纯数学推导,C的源代码也有一大堆,也许百度一下就能找到。不过,买本数字信号处理方面的书看看更好。

人工神经网络可以解决哪些问题

信息领域中的应用:信息处理、模式识别、数据压缩等。自动化领域:系统辨识、神经控制器、智能检测等。工程领域:汽车工程、军事工程、化学工程、水利工程等。

在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。经济领域的应用:市场价格预测、风险评估等。此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。

变频器的控制方式

变频器中常用的控制方式2.1非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1)V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2)转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。

(3)矢量控制矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。

通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。

目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。

基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。

因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改善。但是,这种控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。

无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。

这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。

(4)直接转矩控制直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。

即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。

(5)最优控制最优控制在实际中的应用根据要求的不同而有所不同,可以根据最优控制的理论对某一个控制要求进行个别参数的最优化。

例如在高压变频器的控制应用中,就成功的采用了时间分段控制和相位平移控制两种策略,以实现一定条件下的电压最优波形。

(6)其他非智能控制方式在实际应用中,还有一些非智能控制方式在变频器的控制中得以实现,例如自适应控制、滑模变结构控制、差频控制、环流控制、频率控制等。

2.2智能控制方式智能控制方式主要有神经网络控制、模糊控制、专家系统、学习控制等。在变频器的控制中采用智能控制方式在具体应用中有一些成功的范例。

(1)神经网络控制神经网络控制方式应用在变频器的控制中,一般是进行比较复杂的系统控制,这时对于系统的模型了解甚少,因此神经网络既要完成系统辨识的功能,又要进行控制。

而且神经网络控制方式可以同时控制多个变频器,因此在多个变频器级联时进行控制比较适合。但是神经网络的层数太多或者算法过于复杂都会在具体应用中带来不少实际困难。

(2)模糊控制模糊控制算法用于控制变频器的电压和频率,使电动机的升速时间得到控制,以避免升速过快对电机使用寿命的影响以及升速过慢影响工作效率。

模糊控制的关键在于论域、隶属度以及模糊级别的划分,这种控制方式尤其适用于多输入单输出的控制系统。

(3)专家系统专家系统是利用所谓“专家”的经验进行控制的一种控制方式,因此,专家系统中一般要建立一个专家库,存放一定的专家信息,另外还要有推理机制,以便于根据已知信息寻求理想的控制结果。

专家库与推理机制的设计是尤为重要的,关系着专家系统控制的优劣。应用专家系统既可以控制变频器的电压,又可以控制其电流。

(4)学习控制学习控制主要是用于重复性的输入,而规则的PWM信号(例如中心调制PWM)恰好满足这个条件,因此学习控制也可用于变频器的控制中。

学习控制不需要了解太多的系统信息,但是需要1~2个学习周期,因此快速性相对较差,而且,学习控制的算法中有时需要实现超前环节,这用模拟器件是无法实现的,同时,学习控制还涉及到一个稳定性的问题,在应用时要特别注意。

神经网络到底能干什么?

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。

例如预报天气:温度湿度气压等作为输入天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度湿度气压等得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。

希望采纳!

神经网络是什么?

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

系统辨识与建模 辨识方法有哪些

主要内容包括:线性系统的辨识,多变量线性系统的辨识,线性系统的非参数表示和辨识,非线性系统的辨识,时间序列建模,房室模型(多用于医学、生物工程中)的辨识,神经网络模型的辨识,模糊系统的建模与辨识,遗传算法及其在辨识中的应用,辨识的实施等。

各种方法都给出具体的计算步骤或框图,并结合实例或仿真例子给予说明,尽量使读者易学会用。

本书为天津市高校“十五”规划教材,可作为高等学校自动化、系统工程、经济管理、应用数学等专业的高年级本科生和研究生的教材或参考书,也可作为有关科技工作者、工程技术和管理人员的参考书。

图书目录第1章引论(1)1.1建模与系统辨识概述1.1.1系统辨识研究的对象1.1.2系统辨识1.1.3系统辨识的目的1.1.4辨识中的先验知识1.1.5先验知识的获得1.1.6系统辨识的基本步骤1.2数学模型1.2.1概述1.2.2线性系统的4种数学模型1.3本书的指导思想和布局第2章线性静态模型的辨识(12)2.1问题的提出2.2最小二乘法(ls)2.2.1最小二乘估计2.2.2最小二乘估计的性质2.2.3逐步回归方法2.3病态方程的求解方法2.3.1病态对参数估计的影响2.3.2条件数2.3.3病态方程的求解方法2.4模型参数的最大似然估计(ml)2.4.1最大似然准则2.4.2最大似然估计243松弛算法习题第3章离散线性动态模型的最小二乘估计(27)3.1问题的提法及一次完成最小二乘估计3.2最小二乘估计的递推算法(rls)3.2.1递推最小二乘法3.2.2初始值的选择3.2.3计算步骤及举例3.3时变系统的实时算法3.3.1渐消记忆(指数窗)的递推算法3.3.2限定记忆(固定窗)的递推算法3.3.3变遗忘因子的实时算法3.4递推平方根算法3.5最大似然估计(ml)习题第4章相关(有色)噪声情形的辨识算法(42)4.1辅助变量法4.2增广最小二乘法(els)4.2.1增广最小二乘法4.2.2改进的增广最小二乘法4.3最大似然法(ml)44闭环系统的辨识4.4.1问题的提出4.4.2可辨识性443闭环条件下的最小二乘估计习题第5章模型阶的辨识5.1单变量线性系统阶的辨识5.1.1损失函数检验法5.1.2f检验法5.1.3赤池信息准则(aic准则)5.2阶与参数同时辨识的递推算法5.2.1辨识阶次的基本思想和方法5.2.2阶的递推辨识算法5.2.3几点说明5.3仿真研究5.3.1辨识方法的仿真研究5.3.2对模型适用性的仿真研究5.3.3控制系统设计中的计算机仿真研究习题*第6章多变量线性系统的辨识6.1不变量、适宜选择路线及规范形6.1.1代数等价系统6.1.2适宜选择路线与不变量6.1.3适宜选择路线与规范形6.2输入/输出方程6.2.1输入/输出方程一般形式6.2.2pcf规范形对应的输入/输出方程6.3pcf规范形的辨识6.3.1结构确定及参数辨识6.3.2*和*的实现算法习题第7章线性系统的非参数表示和辨识7.1线性系统的非参数表示7.1.1脉冲响应函数7.1.2markov参数(hankel模型)7.2估计脉冲响应函数的相关方法7.2.1相关方法的基本原理7.2.2伪随机二位式信号(m序列)7.2.3用m序列做输入信号时脉冲响应函数的估计7.2.4估计h(t)的具体步骤与实施习题第8章非线性系统辨识8.1引言8.2单纯形搜索法8.2.1问题的提法8.2.2单纯形搜索法8.3迭代算法的基本原理8.3.1迭代算法的一般步骤8.3.2可接受方向8.4牛顿—拉夫森算法8.5麦夸特方法*8.6数据处理的分组方法。

神经网络技术有什么功能?

神经网络技术对完成对微弱信号的检验和对各传感器信息实时处理,具有自适应自学习功能,能自动掌握环境特征,实现自动目标识别及容错性好,抗干扰能力强等优点。

神经网络技术特别适用于密集信号环境的信息处理、数据收集目标识别、图像处理、无源探测与定位以及人机接口等方面,因而在作战指挥方面有广泛的应用前景。