1. 测试ByteBuffer
1.1 依赖
<dependencies>
<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-all</artifactId>
<version>4.1.48.Final</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.20</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.6</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>20.0</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.4</version>
</dependency>
</dependencies>
1.2 新建文本文件data.txt
15354154154aahbaj
1.3 使用 FileChannel 来读取文件内容
输入或输出流,或者RandomAccessFile获取FileChannel
public static void main(String[] args) {
// 输入或输出流获得 ,或者RandomAccessFile获取FileChannel
try (FileChannel channel = new FileInputStream("data.txt").getChannel()) {
// 准备缓冲区 缓冲区10字节
ByteBuffer buffer = ByteBuffer.allocate(10);
int len = -1;
while ((len = channel.read(buffer)) != -1) {
log.debug("读取到的字节数{}", len);
// 切换buffer为读模式就可以获取数据
buffer.flip();
while (buffer.remaining() > 0) {
byte b = buffer.get();
log.debug("读取到的字符{}", (char) b);
}
// 却换为写模式
buffer.clear();
}
} catch (IOException e) {
}
}
2. ByteBuffer正确使用步骤
ByteBuffer初始是写状态
- 向 buffer 写入数据,例如调用 channel.read(buffer)
- 调用 flip() 切换至读模式
- 从 buffer 读取数据,例如调用 buffer.get()
- 调用 clear() 或 compact() 切换至写模式
- 重复 1~4 步骤
3. ByteBuffer 结构
ByteBuffer 有以下重要属性
- capacity
- position
- limit
一开始
写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态
flip 动作发生后,position 切换为读取位置,limit 切换为读取限制
读取 4 个字节后,状态
clear 动作发生后,状态
compact 方法,是把未读完的部分向前压缩,然后切换至写模式
4. ByteBuffer调试工具类
package com.wang.c1;
import io.netty.util.internal.StringUtil;
import java.nio.ByteBuffer;
import static io.netty.util.internal.MathUtil.isOutOfBounds;
import static io.netty.util.internal.StringUtil.NEWLINE;
public class ByteBufferUtil {
private static final char[] BYTE2CHAR = new char[256];
private static final char[] HEXDUMP_TABLE = new char[256 * 4];
private static final String[] HEXPADDING = new String[16];
private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
private static final String[] BYTE2HEX = new String[256];
private static final String[] BYTEPADDING = new String[16];
static {
final char[] DIGITS = "0123456789abcdef".toCharArray();
for (int i = 0; i < 256; i++) {
HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
}
int i;
// Generate the lookup table for hex dump paddings
for (i = 0; i < HEXPADDING.length; i++) {
int padding = HEXPADDING.length - i;
StringBuilder buf = new StringBuilder(padding * 3);
for (int j = 0; j < padding; j++) {
buf.append(" ");
}
HEXPADDING[i] = buf.toString();
}
// Generate the lookup table for the start-offset header in each row (up to 64KiB).
for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
StringBuilder buf = new StringBuilder(12);
buf.append(NEWLINE);
buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
buf.setCharAt(buf.length() - 9, '|');
buf.append('|');
HEXDUMP_ROWPREFIXES[i] = buf.toString();
}
// Generate the lookup table for byte-to-hex-dump conversion
for (i = 0; i < BYTE2HEX.length; i++) {
BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
}
// Generate the lookup table for byte dump paddings
for (i = 0; i < BYTEPADDING.length; i++) {
int padding = BYTEPADDING.length - i;
StringBuilder buf = new StringBuilder(padding);
for (int j = 0; j < padding; j++) {
buf.append(' ');
}
BYTEPADDING[i] = buf.toString();
}
// Generate the lookup table for byte-to-char conversion
for (i = 0; i < BYTE2CHAR.length; i++) {
if (i <= 0x1f || i >= 0x7f) {
BYTE2CHAR[i] = '.';
} else {
BYTE2CHAR[i] = (char) i;
}
}
}
/**
* 打印所有内容
* @param buffer
*/
public static void debugAll(ByteBuffer buffer) {
int oldlimit = buffer.limit();
buffer.limit(buffer.capacity());
StringBuilder origin = new StringBuilder(256);
appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
System.out.println("+--------+-------------------- all ------------------------+----------------+");
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
System.out.println(origin);
buffer.limit(oldlimit);
}
/**
* 打印可读取内容
* @param buffer
*/
public static void debugRead(ByteBuffer buffer) {
StringBuilder builder = new StringBuilder(256);
appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
System.out.println("+--------+-------------------- read -----------------------+----------------+");
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
System.out.println(builder);
}
private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
if (isOutOfBounds(offset, length, buf.capacity())) {
throw new IndexOutOfBoundsException(
"expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
+ ") <= " + "buf.capacity(" + buf.capacity() + ')');
}
if (length == 0) {
return;
}
dump.append(
" +-------------------------------------------------+" +
NEWLINE + " | 0 1 2 3 4 5 6 7 8 9 a b c d e f |" +
NEWLINE + "+--------+-------------------------------------------------+----------------+");
final int startIndex = offset;
final int fullRows = length >>> 4;
final int remainder = length & 0xF;
// Dump the rows which have 16 bytes.
for (int row = 0; row < fullRows; row++) {
int rowStartIndex = (row << 4) + startIndex;
// Per-row prefix.
appendHexDumpRowPrefix(dump, row, rowStartIndex);
// Hex dump
int rowEndIndex = rowStartIndex + 16;
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
}
dump.append(" |");
// ASCII dump
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
}
dump.append('|');
}
// Dump the last row which has less than 16 bytes.
if (remainder != 0) {
int rowStartIndex = (fullRows << 4) + startIndex;
appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
// Hex dump
int rowEndIndex = rowStartIndex + remainder;
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
}
dump.append(HEXPADDING[remainder]);
dump.append(" |");
// Ascii dump
for (int j = rowStartIndex; j < rowEndIndex; j++) {
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
}
dump.append(BYTEPADDING[remainder]);
dump.append('|');
}
dump.append(NEWLINE +
"+--------+-------------------------------------------------+----------------+");
}
private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
if (row < HEXDUMP_ROWPREFIXES.length) {
dump.append(HEXDUMP_ROWPREFIXES[row]);
} else {
dump.append(NEWLINE);
dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
dump.setCharAt(dump.length() - 9, '|');
dump.append('|');
}
}
public static short getUnsignedByte(ByteBuffer buffer, int index) {
return (short) (buffer.get(index) & 0xFF);
}
}
5. ByteBuffer 常见方法
5.1 分配空间
- allocate()
- allocateDirect()
public static void main(String[] args) {
System.out.println(ByteBuffer.allocate(16).getClass());
System.out.println(ByteBuffer.allocateDirect(16).getClass());
/**
* class java.nio.HeapByteBuffer 使用堆内存 , 读写效率低, 受到gc影响
* class java.nio.DirectByteBuffer 使用直接内存: 读写效率高, 不受到gc影响, 分配的效率低, 可能造成内存泄漏
*/
}
5.2 向buffer中写入数据
- 调用 channel 的 read 方法
int readBytes = channel.read(buf);
- 调用 buffer 自己的 put 方法
ByteBuffer byteBuffer = ByteBuffer.allocate(10);
byteBuffer.put(new byte[] {'a', 'b', 'c', 'd'});
5.3 从 buffer 读取数据
byteBuffer.flip();
// 从头开始读
byteBuffer.get(new byte[4]);
5.4 改变position 指针位置
5.4.1 rewind()
get 方法会让 position 读指针向后走,如果想重复读取数据
- 可以调用 rewind 方法将 position 重新置为 0
- 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针
ByteBuffer byteBuffer = ByteBuffer.allocate(10);
byteBuffer.put(new byte[] {'a', 'b', 'c', 'd'});
byteBuffer.flip();
// 从头开始读
byteBuffer.get(new byte[4]);
ByteBufferUtil.debugAll(byteBuffer);
// 把position 改为零, 又可以重头读
byteBuffer.rewind();
ByteBufferUtil.debugAll(byteBuffer);
5.4.2 mark 和 reset
mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置
rewind 和 flip 都会清除 mark 位置
ByteBuffer byteBuffer2 = ByteBuffer.allocate(10);
byteBuffer2.put(new byte[] {'a', 'b', 'c', 'd'});
byteBuffer2.flip();
ByteBufferUtil.debugAll(byteBuffer2);
byteBuffer2.get();
// 下标为1位置标记
byteBuffer2.mark();
byteBuffer2.get();
byteBuffer2.get();
ByteBufferUtil.debugAll(byteBuffer2);
byteBuffer2.reset();
ByteBufferUtil.debugAll(byteBuffer2);
5.5 字符串与 ByteBuffer 互转
5.5.1 字符串转为ByteBuffer
5.5.1.1 put
ByteBuffer byteBuffer = ByteBuffer.allocate(10);
String str = "hello";
byteBuffer.put(str.getBytes());
ByteBufferUtil.debugAll(byteBuffer);
5.5.1.2 CharSet
CharSet , 自动切换到读模式
ByteBuffer byteBuffer1 = StandardCharsets.UTF_8.encode(str);
ByteBufferUtil.debugAll(byteBuffer1);
5.5.1.3 wrap
wrap, 自动切换到读模式
ByteBuffer byteBuffer2 = ByteBuffer.wrap(str.getBytes());
ByteBufferUtil.debugAll(byteBuffer2);
5.5.2 ByteBuffer转化为字符串
String s = StandardCharsets.UTF_8.decode(byteBuffer1).toString();
6. 分散读取和集中写入
6.1 分散读取
有一个文本文件 3parts.txt
onetwothree
使用如下方式读取,可以将数据填充至多个 buffer
public static void main(String[] args) {
try (FileChannel channel = new RandomAccessFile("3parts.txt","r").getChannel()) {
ByteBuffer b1 = ByteBuffer.allocate(3);
ByteBuffer b2 = ByteBuffer.allocate(3);
ByteBuffer b3 = ByteBuffer.allocate(5);
channel.read(new ByteBuffer[] {b1, b2, b3});
ByteBufferUtil.debugAll(b1);
ByteBufferUtil.debugAll(b2);
ByteBufferUtil.debugAll(b3);
} catch (IOException e) {
}
}
6.2 集中写
public static void main(String[] args) {
ByteBuffer b1 = StandardCharsets.UTF_8.encode("hello");
ByteBuffer b2 = StandardCharsets.UTF_8.encode("java");
ByteBuffer b3 = StandardCharsets.UTF_8.encode("!");
try (FileChannel channel = new RandomAccessFile("words.txt", "rw").getChannel()) {
channel.write(new ByteBuffer[] {b1, b2, b3});
} catch (IOException e) {
}
}