Python房价分析案例 python房价分析论文_Python房价分析案例

Python房价分析案例 python房价分析论文_标准差_02

本文为读者投稿,作者:董汇标MINUS

知乎:https://zhuanlan.zhihu.com/p/97243470

最近和朋友聊到买房问题,所以对某二手房价格信息进行了爬取,爬虫见本公众号另一篇文章。

本篇文章利用爬到数据的进行数据分析。

在这篇文章中,用到pandas、seaborn、Matplotlib等工具,分析工具用到提琴图、箱型图、散点图等。

描述性分析

首先导入各种需要的库方便后续一切操作,并读取数据表,直接描述一下看看情况

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

# 这部分是超参数提前设置sns.set(style='darkgrid')
plt.rcParams['font.family']='Arial Unicode MS'
plt.rcParams['axes.unicode_minus']=False
warnings.filterwarnings('ignore')


data =pd.read_csv('链家新房100个.csv')
data.describe()

Python房价分析案例 python房价分析论文_数据_03

最贵和最便宜

从上面输出表格可以看到初步结论如下:

这些二手房最小面积9.6平米,最大718平米,最便宜的56万,最贵的5200万。面积大概集中在59-102平,价格大概集中在325-630万,初步信息看完了有个印象,下边进行详细分析。

首先我对这个9.6平的房子很感兴趣,提取出来看看,但是运行下边代码看到,CBD核心区,别墅,9.64平,56W,估计是从厕所拆出来卖的。。

作罢。跳过他继续分析

data.min()

Python房价分析案例 python房价分析论文_Python房价分析案例_04

而最贵的呢在鼓楼大街(二环边上)联排别墅,售价5200万。emmm

data.max()

Python房价分析案例 python房价分析论文_数据_05

价格分布&面积分布粗看

现在我想直观的看一下售价分布,从下图可以看到,售价主要集中在1000万之内

sns.distplot(data['钱'].dropna())

Python房价分析案例 python房价分析论文_ico_06

同样的思路看一下面积,可以看到这些二手房源面积主要集中在100平米左右

sns.distplot(data['面积'].dropna())

Python房价分析案例 python房价分析论文_数据_07

此处其实也可以两张图一块看,代码如下:(都有点右偏)

fig, ax =plt.subplots(1,2)  #2个子区域
sns.distplot(data['钱'],ax=ax[0])
sns.distplot(data['面积'],ax=ax[1])
plt.show()

Python房价分析案例 python房价分析论文_Python房价分析案例_08

售价精看

对售价做一个箱型图看看,很明显的1000万那条横线以上的点儿,都是合理数据外的数据。

sns.boxplot(data=data['钱'])

Python房价分析案例 python房价分析论文_ico_09

那么合理的数据分别是什么呢?可以参考以下代码

mean, std = data['钱'].mean() , data['钱'].std()
# 得到上下限
lower , upper =mean -3*std , mean+3*std

print('均值',mean)
print('标准差',std)
print('下限',lower)
print('上限',upper)

打印结果可以看到的是标准差集中在358万,合理上限是1613万。对现实的指导就是:如果有358万,买一套房子就够了,1613万以上的房买起来就是坑爹了。

均值 538.44
标准差 358.47
下限 -536.9763753150206
上限 1613.8755022458467

价格最低的20套

通过这段代码可以看一下这些房子分布在哪里。

结论见代码下截图,如果你对北京熟悉,可以看到,这些房子主要分布在5环外,部分在顺义、昌平、门头沟等地。

t=data[['小区','地区','钱']].sort_values('钱')
display(t.iloc[:20])

Python房价分析案例 python房价分析论文_Python房价分析案例_10

Python房价分析案例 python房价分析论文_数据_11

面积精看

同样的方式,可以把”钱"列换为“面积”列看一下,面积均值89平,标准差50平,合理上限240平

均值 89.8874210879787
标准差 50.36697951495447
下限 -61.21351745688473
上限 240.9883596328421

面积最小的部分信息如下

Python房价分析案例 python房价分析论文_标准差_12

朝向和装修程度

通过对户型方向进行分组展示可以看到在北京,主要还是南北向的,东西朝向的低很多

posit=data['方向'].value_counts()[:10]
display(posit)

Python房价分析案例 python房价分析论文_Python房价分析案例_13

装修程度有四类:精装、简装、毛坯、其他。

建筑形式有:板楼、塔楼、板楼塔楼结合、别墅等,

这两个维度与价格有啥关系呢?

来分析分析,做三个图先:

图一:装修状态和价格关系

Python房价分析案例 python房价分析论文_标准差_14

图二:装修状态&建筑形式与售价关系

Python房价分析案例 python房价分析论文_Python房价分析案例_15

图三:建筑形式连同装修状态与价格关系

Python房价分析案例 python房价分析论文_Python房价分析案例_16

图四:建筑形式箱型图

Python房价分析案例 python房价分析论文_ico_17

通过对装修状态做价格分布图可以看到,精装修的集中在400±100万左右,简装稍微便宜一丢丢,毛坯房二手很少,其他形式的很多,价格集中在300-500万左右

对装修状态进行楼房形式的拆解后做箱型图如上,得到结论是板楼、塔楼、板楼塔楼结合是最多的,不论是精装简装还是其他信息不明的装修状态的。

对建筑形式连同装修状态和价格关系可以看到,不论什么类型的建筑形式,都存在精装修、简装修、毛坯。板楼价格横跨100万-1000万之间,集中在300-600万之间,板楼塔楼结合的价格集中在350万-700万之间,塔楼集中在380-700万之间。

初步结论,如果能搞到300万以上,精装修的板楼或塔楼随便选。

但若没这么多钱,也可以有50-300万之间的选择,只是选项少一些,但并不是没有选择。

在这个初步结论基础上提问:我有xxx万,那么我能买到多少平的房子呢?

价格面积分析

先将面积分组,分组函数如下

def value_to_level(area):
    if area >= 0 and area <=40:
        return '40内'
    elif area >= 41 and area <=60:
        return '41-60'
    elif area >= 61 and area <=80:
        return '61-80'
    elif area >= 81 and area <=130:
        return '81-110'
    elif area >= 81 and area <=130:
        return '111-130'
    elif area >= 131 and area <=180:
        return '131-180'
    elif area >= 181 and area <=250:
        return '181-250'
    else :
        return '250以上'

level= data['面积'].apply(value_to_level)
display(level.value_counts())
sns.countplot(x=level , order=['40内','41-60','61-80','81-110','111-130','131-180','181-250','250以上'])

分组后作图如下:

面积主要集中在40-110平之间。

Python房价分析案例 python房价分析论文_Python房价分析案例_18

做一张散点图,表明价格、面积的分布,限定横坐标50-500万之间,纵坐标40-120平之间

sns.scatterplot(data['钱'], data['面积'])
plt.xlim(50,500)
plt.ylim(40,120)
plt.show()

Python房价分析案例 python房价分析论文_数据_19

所以,到这里,有大概多少钱,能买多少平的房子,一目了然。

其实可以看到:180万以上就有很多选择了。

如果只是想先买一套100万左右也有满足的情况

今天的分析就到这里。

希望对您带来帮助。

本文为读者投稿,作者:董汇标MINUS