该部分为一些零散的面试理论知识点:
1、ConcurrentHashMap的并发度是什么
    ConcurrentHashMap的并发度就是segment的大小,默认为16,这意味着最多同时可以有16条线程操作ConcurrentHashMap,这也是ConcurrentHashMap对Hashtable的最大优势
2、ReadWriteLock
    首先明确一下,不是说ReentrantLock不好,只是ReentrantLock某些时候有局限。如果使用ReentrantLock,可能本身是为了防止线程A在写数据、线程B在读数据造成的数据不一致,但这样,如果线程C在读数据、线程D也在读数据,读数据是不会改变数据的,没有必要加锁,但是还是加锁了,降低了程序的性能。因为这个,才诞生了读写锁ReadWriteLock。ReadWriteLock是一个读写锁接口,ReentrantReadWriteLock是ReadWriteLock接口的一个具体实现,实现了读写的分离, 读锁是共享的,写锁是独占的 ,读和读之间不会互斥,读和写、写和读、写和写之间才会互斥,提升了读写的性能。
3、FutureTask
    这个其实前面有提到过,FutureTask表示一个异步运算的任务。FutureTask里面可以传入一个Callable的具体实现类,可以对这个异步运算的任务的结果进行等待获取、判断是否已经完成、取消任务等操作。当然,由于FutureTask也是Runnable接口的实现类,所以FutureTask也可以放入线程池中。
4、Thread.sleep(0)的作用是什么
    由于Java采用抢占式的线程调度算法,因此可能会出现某条线程常常获取到CPU控制权的情况,为了让某些优先级比较低的线程也能获取到CPU控制权,可以使用Thread.sleep(0)手动触发一次操作系统分配时间片的操作,这也是平衡CPU控制权的一种操作。
5、Hashtable的size()方法为什么要做同步
    这是我之前的一个困惑,不知道大家有没有想过这个问题。某个方法中如果有多条语句,并且都在操作同一个类变量,那么在多线程环境下不加锁,势必会引发线程安全问题,这很好理解,但是size()方法明明只有一条语句,为什么还要加锁?
1)同一时间只能有一条线程执行固定类的同步方法,但是对于类的非同步方法,可以多条线程同时访问 。所以,这样就有问题了,可能线程A在执行Hashtable的put方法添加数据,线程B则可以正常调用size()方法读取Hashtable中当前元素的个数,那读取到的值可能不是最新的,可能线程A添加了完了数据,但是没有对size++,线程B就已经读取size了,那么对于线程B来说读取到的size一定是不准确的。而给size()方法加了同步之后,意味着线程B调用size()方法只有在线程A调用put方法完毕之后才可以调用,这样就保证了线程安全性
2)CPU执行代码,执行的不是Java代码,这点很关键,一定得记住 。Java代码最终是被翻译成汇编代码执行的,汇编代码才是真正可以和硬件电路交互的代码。 即使你看到Java代码只有一行,甚至你看到Java代码编译之后生成的字节码也只有一行,也不意味着对于底层来说这句语句的操作只有一个 。一句”return count”假设被翻译成了三句汇编语句执行,完全可能执行完第一句,线程就切换了。
6、 线程类的构造方法、静态块是被哪个线程调用的
    这是一个非常刁钻和狡猾的问题。请记住:线程类的构造方法、静态块是被new这个线程类所在的线程所调用的,而run方法里面的代码才是被线程自身所调用的。如果说上面的说法让你感到困惑,那么我举个例子, 假设Thread2中new了Thread1,main函数中new了Thread2,那么:
1)Thread2的构造方法、静态块是main线程调用的,Thread2的run()方法是Thread2自己调用的
2)Thread1的构造方法、静态块是Thread2调用的,Thread1的run()方法是Thread1自己调用的
7、如何选择同步方法和同步块
    同步块,这意味着同步块之外的代码是异步执行的,这比同步整个方法更提升代码的效率。请知道一条原则:同步的范围越少越好。借着这一条,我额外提一点,虽说同步的范围越少越好,但是在Java虚拟机中还是存在着一种叫做 锁粗化 的优化方法,这种方法就是把同步范围变大。这是有用的,比方说StringBuffer,它是一个线程安全的类,自然最常用的append()方法是一个同步方法,我们写代码的时候会反复append字符串,这意味着要进行反复的加锁->解锁,这对性能不利,因为这意味着Java虚拟机在这条线程上要反复地在内核态和用户态之间进行切换,因此Java虚拟机会将多次append方法调用的代码进行一个锁粗化的操作,将多次的append的操作扩展到append方法的头尾,变成一个大的同步块,这样就减少了加锁–>解锁的次数,有效地提升了代码执行的效率。
8、如何根据并发与任务执行时间确认线程池
1)高并发、任务执行时间短的业务,线程池线程数可以设置为CPU核数+1,减少线程上下文的切换
2)并发不高、任务执行时间长的业务要区分开看:
    a)假如是业务时间长集中在IO操作上,也就是IO密集型的任务,因为IO操作并不占用CPU,所以不要让所有的CPU闲下来,可以加大线程池中的线程数目,让CPU处理更多的业务
    b)假如是业务时间长集中在计算操作上,也就是计算密集型任务,这个就没办法了,和(1)一样吧,线程池中的线程数设置得少一些,减少线程上下文的切换
3)并发高、业务执行时间长,解决这种类型任务的关键不在于线程池而在于整体架构的设计,看看这些业务里面某些数据是否能做缓存是第一步,增加服务器是第二步,至于线程池的设置,设置参考(2)。最后,业务执行时间长的问题,也可能需要分析一下,看看能不能使用中间件对任务进行拆分和解耦
9、如何解决多线程之间线程安全问题
使用多线程之间同步synchronized或使用锁(lock)。
解释:线程安全性包括两个方面:
1)可见性    
2)原子性    仅仅使用volatile,能保证的线程的原子性但是并不能保证线程安全性。而synchronized则可实现线程的安全性。
10、如何检测一个线程是否持有对象监视器
  Thread类提供了一个holdsLock(Object obj)方法,当且仅当对象obj的监视器被某条线程持有的时候才会返回true,注意这是一个static方法,这意味着 “某条线程”指的是当前线程
11、如何唤醒一个阻塞的线程
    如果线程是因为调用了wait()、sleep()或者join()方法而导致的阻塞,可以中断线程,并且通过抛出InterruptedException来唤醒它;
如果线程遇到了IO阻塞,无能为力,因为IO是操作系统实现的,Java代码并没有办法直接接触到操作系统。
上述知识点是我在园友一篇关于多线程的面试题上看到的,当时做了记录但是没保存连接。望谅解!更多多线程基础知识,可查看多线程分类中的内容