一、函数递归
1.什么是函数递归:函数的递归调用是函数嵌套的一种特殊形式,在调用一个函数的过程中又直接或者间接地调用该函数本身,称之为函数的递归调用
2.递归调用必须明确的两个阶段:
1.回溯:一次次递归调用下去,应该让每一次重复问题的规模有所减少,直到逼近最终的结果,即回溯阶段一定要有明确的结束条件
2.递推:往回一层一层推算结果
例子:
# def age(n):
# if n == 1:
# return 18
# return age(n-1) + 2
#
#
# print(age(5))
思路:
# age(5)=age(4)+2
# age(4)=age(3)+2
# age(3)=age(2)+2
# age(2)=age(1)+2
# age(1)=18
#
# age(n)=age(n-1)+2 #n>1
# age(n)=18 #n=1
二分法:
# nums=[13,15,17,23,31,53,74,81,93,102,103,201,303,403,503,777]
# find_num=503
#
#
# def binary_search(nums,find_num):
# print(nums)
# if len(nums) == 0:
# print('not exists')
# return
# mid_index=len(nums) // 2
# if find_num > nums[mid_index]:
# # in the right
# nums=nums[mid_index+1:]
# # 重新执行二分的逻辑
# binary_search(nums,find_num)
# elif find_num < nums[mid_index]:
# #in the left
# nums=nums[0:mid_index]
# # 重新执行二分的逻辑
# binary_search(nums,find_num)
# else:
# print('find it')
binary_search(nums,find_num)
二、三元表达式
三元表达式实现的效果就是:条件成立的情况下返回一个值,不成立的情况下返回另外一种值
# res=条件成立情况下返回的值 if 条件 else 条件不成立情况下返回的值
name=input('your name: ').strip()
res="SB" if name == 'lqz' else "NB"
print(res)
三、列表生成式
# l =[ i for i in range(10)]
# print(l)
# l = [i for i in range(10) if (i%2)==0]
# print(l)
names = ['alex_sb','lqz_sb','yyh_sb','fm_sb','egon']
l=[name for name in names if name.endswith('sb')]
print(l)
四、字典生成式
keys=[‘name‘,‘age‘,‘sex‘]
values=[‘egon‘,18,‘male‘]
res=zip(keys,values)
print(list(res)) #[(‘name‘, ‘egon‘), (‘age‘, 18), (‘sex‘, ‘male‘)]
方式一
d={ }
for k,v in zip(keys,values):
d[k]=v
print(d) #{‘name‘: ‘egon‘, ‘age‘: 18, ‘sex‘: ‘male‘}
方式二
d={k:v for k,v in zip(keys,values)}
print(d) #{‘name‘: ‘egon‘, ‘age‘: 18, ‘sex‘: ‘male‘}
方式三
dic={k:values[i] for i,k in enumerate(keys)}
print(dic)
补充:zip(拉链函数)
s=‘hello‘
l=[1,2,3,]
res=zip(s,l)
print(list(res)) #[(‘h‘, 1), (‘e‘, 2), (‘l‘, 3)]
五、匿名函数
匿名函数就是没有名字的函数,用于仅仅临时使用一次的场景,没有重复使用的需求,一般和内置函数结合使用
# max,min,sorted,map,filter,reduce
常规函数使用 def
关键字定义,但匿名函数使用 lambda
关键字定义
语法格式为 lambda arguments:expression
-
lambda
:定义匿名函数的关键字 -
arguments
:函数的参数列表,参数之间用逗号(,
)分割。 -
expression
:被返回的表达式,且表达式只能有一个(注意: lambda 定义不包含 return语句)。 - lambda 表达式构建的其实是一个函数对象
内置函数和匿名函数搭配使用的例子:
salaries={
'egon':300000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
}
# 求最大值
res=max(salaries,key=lambda name:salaries[name]) #'egon'
print(res)
# 求最小值
res=min(salaries,key=lambda name:salaries[name]) #'egon'
print(res)
注:max直接返回的是人名,需要使用里面的参数key,通过key指定的函数,将拿到的返回值当做比较依据。
map()函数:
map(function, iterable, ...)
# map:把一个列表按照我们自定义的映射规则映射成一个新的列表
names=['alex','lxx','wxx','yxx']
# res=map(lambda name: name + "dSB", names)
# print(list(res))
filter(func, seq)
该函数的目的是提取出seq中能使func为true的元素序列。func函数是一个布尔函数,filter()函数调用这个函数一次作用于seq中的每一个元素,筛选出符合条件的元素,并以列表的形式返回。
# names=['alex_sb','lxx_sb','wxx_sb','egon','yxx']
# res=filter(lambda name:name.endswith('sb'),names)
# print(list(res))
reduce()
格式:
reduce (func, seq[, init()])
# reduce: 把多个值合并成一个结果
from functools import reduce
l=['a','b','c','d']
res=reduce(lambda x,y:x+y,l,'A')
# 'A','a' => 'Aa'
# 'Aa','b'=>'Aab'
# 'Aab','c'=>'Aabc'
# 'Aabc','d'=>'Aabcd'
print(res)