前言:生产服务器内存使用过高预警,为了解决预警,重启了服务器;之后做总结;

事件过程:收到报警之后,查看日志信息,判断和前段时间的业务量并没有什么大的变化;又查看了下内存的使用情况,发现在一点点的上升;后续查看启动参数时,对于启动参数的配置,有一些疑义;
     因此,对JVM内存模型与JVM参数配置进行一下记录;

 

JVM内存结构

res内存和jvm内存 jvm 内存参数_res内存和jvm内存

 

 

由上图可以清楚的看到JVM的内存空间分为3大部分:

  1. 堆内存
  2. 方法区
  3. 栈内存

其中栈内存可以再细分为java虚拟机栈和本地方法栈,堆内存可以划分为新生代和老年代,新生代中还可以再次划分为Eden区、From Survivor区和To Survivor区。

其中一部分是线程共享的,包括 Java 堆和方法区;另一部分是线程私有的,包括虚拟机栈和本地方法栈,以及程序计数器这一小部分内存。

堆内存(Heap)

对于大多数应用来说,Java 堆(Java Heap)是Java 虚拟机所管理的内存中最大的一块。Java 堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。

此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。

堆内存是所有线程共有的,可以分为两个部分:年轻代和老年代。

下图中的Perm代表的是永久代,但是注意永久代并不属于堆内存中的一部分,同时jdk1.8之后永久代已经被移除。

res内存和jvm内存 jvm 内存参数_操作系统_02

 

 

新生代 ( Young ) 与老年代 ( Old ) 的比例的值为 1:2 ( 该值可以通过参数 –XX:NewRatio 来指定 )

默认的,Eden : from : to = 8 : 1 : 1 ( 可以通过参数 –XX:SurvivorRatio 来设定 ),即: Eden = 8/10 的新生代空间大小,from = to = 1/10 的新生代空间大小。

方法区(Method Area)

方法区也称"永久代",它用于存储虚拟机加载的类信息、常量、静态变量、是各个线程共享的内存区域。

在JDK8之前的HotSpot JVM,存放这些”永久的”的区域叫做“永久代(permanent generation)”。永久代是一片连续的堆空间,在JVM启动之前通过在命令行设置参数-XX:MaxPermSize来设定永久代最大可分配的内存空间,默认大小是64M(64位JVM默认是85M)。

随着JDK8的到来,JVM不再有 永久代(PermGen)。但类的元数据信息(metadata)还在,只不过不再是存储在连续的堆空间上,而是移动到叫做“Metaspace”的本地内存(Native memory。

方法区或永生代相关设置

  • -XX:PermSize=64MB 最小尺寸,初始分配
  • -XX:MaxPermSize=256MB 最大允许分配尺寸,按需分配
  • XX:+CMSClassUnloadingEnabled -XX:+CMSPermGenSweepingEnabled 设置垃圾不回收
  • 默认大小
  • -server选项下默认MaxPermSize为64m
  • -client选项下默认MaxPermSize为32m

虚拟机栈(JVM Stack)

描述的是java方法执行的内存模型:每个方法被执行的时候都会创建一个"栈帧",用于存储局部变量表(包括参数)、操作栈、方法出口等信息。每个方法被调用到执行完的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

本地方法栈(Native Stack)

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。

程序计数器(PC Register)

程序计数器是用于标识当前线程执行的字节码文件的行号指示器。多线程情况下,每个线程都具有各自独立的程序计数器,所以该区域是非线程共享的内存区域。

当执行java方法时候,计数器中保存的是字节码文件的行号;当执行Native方法时,计数器的值为空。

直接内存

直接内存并不是虚拟机内存的一部分,也不是Java虚拟机规范中定义的内存区域。jdk1.4中新加入的NIO,引入了通道与缓冲区的IO方式,它可以调用Native方法直接分配堆外内存,这个堆外内存就是本机内存,不会影响到堆内存的大小。

JVM内存参数设置

res内存和jvm内存 jvm 内存参数_操作系统_03

 

 

  • -Xms设置堆的最小空间大小。
  • -Xmx设置堆的最大空间大小。
  • -Xmn:设置年轻代大小
  • -XX:NewSize设置新生代最小空间大小。
  • -XX:MaxNewSize设置新生代最大空间大小。
  • -XX:PermSize设置永久代最小空间大小。
  • -XX:MaxPermSize设置永久代最大空间大小。
  • -Xss设置每个线程的堆栈大小
  • -XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
  • -XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
  • -XX:CMSInitiatingPermOccupancyFraction:当永久区占用率达到这一百分比时,启动CMS回收
    -XX:CMSInitiatingOccupancyFraction:设置CMS收集器在老年代空间被使用多少后触发
    -XX:+CMSClassUnloadingEnabled:允许对类元数据进行回收
    -XX:CMSFullGCsBeforeCompaction:设定进行多少次CMS垃圾回收后,进行一次内存压缩
    -XX:NewRatio:新生代和老年代的比
    -XX:ParallelCMSThreads:设定CMS的线程数量
    -XX:ParallelGCThreads:设置用于垃圾回收的线程数
    -XX:SurvivorRatio:设置eden区大小和survivior区大小的比例
    -XX:+UseParNewGC:在新生代使用并行收集器
    -XX:+UseParallelGC :新生代使用并行回收收集器
    -XX:+UseParallelOldGC:老年代使用并行回收收集器
    -XX:+UseSerialGC:在新生代和老年代使用串行收集器
    -XX:+UseConcMarkSweepGC:新生代使用并行收集器,老年代使用CMS+串行收集器
    -XX:+UseCMSCompactAtFullCollection:设置CMS收集器在完成垃圾收集后是否要进行一次内存碎片的整理
    -XX:UseCMSInitiatingOccupancyOnly:表示只在到达阀值的时候,才进行CMS回收
    -XX:NewSize设置新生代最小空间大小。
    -XX:MaxNewSize设置新生代最大空间大小。
    -XX:PermSize设置永久代最小空间大小。
    -XX:MaxPermSize设置永久代最大空间大小。
    -Xss:设置每个线程的堆栈大小

1.堆设置

    -Xms:初始堆大小
    -Xmx:最大堆大小
    -XX:NewSize=n:设置年轻代大小
    -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
    -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
    -XX:MaxPermSize=n:设置持久代大小

2.收集器设置

    -XX:+UseSerialGC:设置串行收集器
    -XX:+UseParallelGC:设置并行收集器
    -XX:+UseParalledlOldGC:设置并行年老代收集器
    -XX:+UseConcMarkSweepGC:设置并发收集器

3.垃圾回收统计信息

    -XX:+PrintGC
    -XX:+PrintGCDetails
    -XX:+PrintGCTimeStamps
    -Xloggc:filename

4.并行收集器设置

    -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
    -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
    -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)

5.并发收集器设置

    -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
    -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

 

 

-Xmx3550m:设置JVM最大可用内存为3550M。

-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

-Xmn2g:设置年轻代大小为2G。整个堆大小=年轻代大小+年老代大小+持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,官方推荐配置为整个堆的3/8。

-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大 小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000 左右。

 

回收器选择
  JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。

    1.吞吐量优先的并行收集器
    如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
    典型配置:
        java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
        -XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
        -XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
        java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
        -XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
        java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100
        -XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
        java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
        -XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。

    2.响应时间优先的并发收集器
    如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
    典型配置:
        java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
        -XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
        -XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
        java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
        -XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
        -XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片

调优总结

    1.年轻代大小选择
        响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
        吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。

    2.年老代大小选择
        响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
            并发垃圾收集信息
            持久代并发收集次数
            传统GC信息
            花在年轻代和年老代回收上的时间比例
        减少年轻代和年老代花费的时间,一般会提高应用的效率
        吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
    较小堆引起的碎片问题
    因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
        -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
        -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩