问题1
到底什么是Python?你可以在回答中与其他技术进行对比(也鼓励这样做)。
答案
为什么提这个问题:
如果你应聘的是一个Python开发岗位,你就应该知道这是门什么样的语言,以及它为什么这么酷。以及它哪里不好。
问题2
补充缺失的代码
答案
特别要注意以下几点:
为什么提这个问题:
说明面试者对与操作系统交互的基础知识
递归真是太好用啦
问题3
阅读下面的代码,写出A0,A1至An的最终值。
A0 = dict(zip(('a','b','c','d','e'),(1,2,3,4,5)))
A1 = range(10)
A2 = [i for i in A1 if i in A0]
A3 = [A0[s] for s in A0]
A4 = [i for i in A1 if i in A3]
A5 = {i:i*i for i in A1}
A6 = [[i,i*i] for i in A1]
答案
A0 = {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}
A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A2 = []
A3 = [1, 3, 2, 5, 4]
A4 = [1, 2, 3, 4, 5]
A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]
为什么提这个问题:
列表解析(list comprehension)十分节约时间,对很多人来说也是一个大的学习障碍。
如果你读懂了这些代码,就很可能可以写下正确地值。
其中部分代码故意写的怪怪的。因为你共事的人之中也会有怪人。
问题4
Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法。
答案
为什么提这个问题
因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。
问题5
你如何管理不同版本的代码?
答案:
版本管理!被问到这个问题的时候,你应该要表现得很兴奋,甚至告诉他们你是如何使用Git(或是其他你最喜欢的工具)追踪自己和奶奶的书信往来。我偏向于使用Git作为版本控制系统(VCS),但还有其他的选择,比如subversion(SVN)。
为什么提这个问题:
因为没有版本控制的代码,就像没有杯子的咖啡。有时候我们需要写一些一次性的、可以随手扔掉的脚本,这种情况下不作版本控制没关系。但是如果你面对的是大量的代码,使用版本控制系统是有利的。版本控制能够帮你追踪谁对代码库做了什么操作;发现新引入了什么bug;管理你的软件的不同版本和发行版;在团队成员中分享源代码;部署及其他自动化处理。它能让你回滚到出现问题之前的版本,单凭这点就特别棒了。还有其他的好功能。怎么一个棒字了得!
问题6
下面代码会输出什么:
def f(x,l=[]):
for i in range(x):
l.append(i*i)
print l
f(2)
f(3,[3,2,1])
f(3)
答案:
[0, 1]
[3, 2, 1, 0, 1, 4]
[0, 1, 0, 1, 4]
第一个函数调用十分明显,for循环先后将0和1添加至了空列表l中。l是变量的名字,指向内存中存储的一个列表。第二个函数调用在一块新的内存中创建了新的列表。l这时指向了新生成的列表。之后再往新列表中添加0、1、2和4。很棒吧。第三个函数调用的结果就有些奇怪了。它使用了之前内存地址中存储的旧列表。这就是为什么它的前两个元素是0和1了。
不明白的话就试着运行下面的代码吧:
问题7
“猴子补丁”(monkey patching)指的是什么?这种做法好吗?
答案:
“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。
举个例子:
import datetime
datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)
大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock包对实现这个目的很有帮助。
为什么提这个问题?
答对这个问题说明你对单元测试的方法有一定了解。你如果提到要避免“猴子补丁”,可以说明你不是那种喜欢花里胡哨代码的程序员(公司里就有这种人,跟他们共事真是糟糕透了),而是更注重可维护性。还记得KISS原则码?答对这个问题还说明你明白一些Python底层运作的方式,函数实际是如何存储、调用等等。
另外:如果你没读过mock模块的话,真的值得花时间读一读。这个模块非常有用。
问题8
这两个参数是什么意思:*args,**kwargs?我们为什么要使用它们?
答案
如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args;如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargs。args和kwargs这两个标识符是约定俗成的用法,你当然还可以用*bob和**billy,但是这样就并不太妥。
下面是具体的示例:
为什么提这个问题?
有时候,我们需要往函数中传入未知个数的参数或关键词参数。有时候,我们也希望把参数或关键词参数储存起来,以备以后使用。有时候,仅仅是为了节省时间。
问题9
下面这些是什么意思:@classmethod, @staticmethod, @property?
回答背景知识
这些都是装饰器(decorator)。装饰器是一种特殊的函数,要么接受函数作为输入参数,并返回一个函数,要么接受一个类作为输入参数,并返回一个类。@标记是语法糖(syntactic sugar),可以让你以简单易读得方式装饰目标对象。
真正的答案
@classmethod, @staticmethod和@property这三个装饰器的使用对象是在类中定义的函数。下面的例子展示了它们的用法和行为:
o = MyClass()
# 未装饰的方法还是正常的行为方式,需要当前的类实例(self)作为第一个参数。
o.normal_method
# >
o.normal_method()
# normal_method((<__main__.myclass instance at>,),{})
o.normal_method(1,2,x=3,y=4)
# normal_method((<__main__.myclass instance at>, 1, 2),{'y': 4, 'x': 3})
# 类方法的第一个参数永远是该类
o.class_method
# >
o.class_method()
# class_method((,),{})
o.class_method(1,2,x=3,y=4)
# class_method((, 1, 2),{'y': 4, 'x': 3})
# 静态方法(static method)中除了你调用时传入的参数以外,没有其他的参数。
o.static_method
#
o.static_method()
# static_method((),{})
o.static_method(1,2,x=3,y=4)
# static_method((1, 2),{'y': 4, 'x': 3})
# @property是实现getter和setter方法的一种方式。直接调用它们是错误的。
# “只读”属性可以通过只定义getter方法,不定义setter方法实现。
o.some_property
# 调用some_property的getter(<__main__.myclass instance at>,(),{})
# 'properties are nice'
# “属性”是很好的功能
o.some_property()
# calling some_property getter(<__main__.myclass instance at>,(),{})
# Traceback (most recent call last):
# File "", line 1, in
# TypeError: 'str' object is not callable
o.some_other_property
# calling some_other_property getter(<__main__.myclass instance at>,(),{})
# 'VERY nice'
# o.some_other_property()
# calling some_other_property getter(<__main__.myclass instance at>,(),{})
# Traceback (most recent call last):
# File "", line 1, in
# TypeError: 'str' object is not callable
o.some_property = "groovy"
# calling some_property setter(<__main__.myclass object at>,('groovy',),{})
o.some_property
# calling some_property getter(<__main__.myclass object at>,(),{})
# 'groovy'
o.some_other_property = "very groovy"
# Traceback (most recent call last):
# File "", line 1, in
# AttributeError: can't set attribute
o.some_other_property
# calling some_other_property getter(<__main__.myclass object at>,(),{})
问题10
阅读下面的代码,它的输出结果是什么?
答案
输出结果以注释的形式表示:
a.go()
# go A go!
b.go()
# go A go!
# go B go!
c.go()
# go A go!
# go C go!
d.go()
# go A go!
# go C go!
# go B go!
# go D go!
e.go()
# go A go!
# go C go!
# go B go!
a.stop()
# stop A stop!
b.stop()
# stop A stop!
c.stop()
# stop A stop!
# stop C stop!
d.stop()
# stop A stop!
# stop C stop!
# stop D stop!
e.stop()
# stop A stop!
a.pause()
# ... Exception: Not Implemented
b.pause()
# ... Exception: Not Implemented
c.pause()
# ... Exception: Not Implemented
d.pause()
# wait D wait!
e.pause()
# ...Exception: Not Implemented
问题11
阅读下面的代码,它的输出结果是什么?
class Node(object):
def __init__(self,sName):
self._lChildren = []
self.sName = sName
def __repr__(self):
return "".format(self.sName)
def append(self,*args,**kwargs):
self._lChildren.append(*args,**kwargs)
def print_all_1(self):
print self
for oChild in self._lChildren:
oChild.print_all_1()
def print_all_2(self):
def gen(o):
lAll = [o,]
while lAll:
oNext = lAll.pop(0)
lAll.extend(oNext._lChildren)
yield oNext
for oNode in gen(self):
print oNode
oRoot = Node("root")
oChild1 = Node("child1")
oChild2 = Node("child2")
oChild3 = Node("child3")
oChild4 = Node("child4")
oChild5 = Node("child5")
oChild6 = Node("child6")
oChild7 = Node("child7")
oChild8 = Node("child8")
oChild9 = Node("child9")
oChild10 = Node("child10")
oRoot.append(oChild1)
oRoot.append(oChild2)
oRoot.append(oChild3)
oChild1.append(oChild4)
oChild1.append(oChild5)
oChild2.append(oChild6)
oChild4.append(oChild7)
oChild3.append(oChild8)
oChild3.append(oChild9)
oChild6.append(oChild10)
# 说明下面代码的输出结果
oRoot.print_all_1()
oRoot.print_all_2()
答案
oRoot.print_all_1()会打印下面的结果:
oRoot.print_all_1()会打印下面的结果:
为什么提这个问题?
因为对象的精髓就在于组合(composition)与对象构造(object construction)。对象需要有组合成分构成,而且得以某种方式初始化。这里也涉及到递归和生成器(generator)的使用。
生成器是很棒的数据类型。你可以只通过构造一个很长的列表,然后打印列表的内容,就可以取得与print_all_2类似的功能。生成器还有一个好处,就是不用占据很多内存。
有一点还值得指出,就是print_all_1会以深度优先(depth-first)的方式遍历树(tree),而print_all_2则是宽度优先(width-first)。有时候,一种遍历方式比另一种更合适。但这要看你的应用的具体情况。
问题12
简要描述Python的垃圾回收机制(garbage collection)。
答案
这里能说的很多。你应该提到下面几个主要的点:
Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。
偶尔也会出现引用循环(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1和o2,而且符合o1.x == o2和o2.x == o1这两个条件。如果o1和o2没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。
Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。
问题13
将下面的函数按照执行效率高低排序。它们都接受由0至1之间的数字构成的列表作为输入。这个列表可以很长。一个输入列表的示例如下:[random.random() for i in range(100000)]。你如何证明自己的答案是正确的。
答案
按执行效率从高到低排列:f2、f1和f3。要证明这个答案是对的,你应该知道如何分析自己代码的性能。Python中有一个很好的程序分析包,可以满足这个需求。
为了向大家进行完整地说明,下面我们给出上述分析代码的输出结果:
>>> cProfile.run('f1(lIn)')
4 function calls in 0.045 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.009 0.009 0.044 0.044 :1(f1)
1 0.001 0.001 0.045 0.045 :1()
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.035 0.035 0.035 0.035 {sorted}
>>> cProfile.run('f2(lIn)')
4 function calls in 0.024 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.008 0.008 0.023 0.023 :1(f2)
1 0.001 0.001 0.024 0.024 :1()
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.016 0.016 0.016 0.016 {sorted}
>>> cProfile.run('f3(lIn)')
4 function calls in 0.055 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.016 0.016 0.054 0.054 :1(f3)
1 0.001 0.001 0.055 0.055 :1()
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.038 0.038 0.038 0.038 {sorted}
为什么提这个问题?
定位并避免代码瓶颈是非常有价值的技能。想要编写许多高效的代码,最终都要回答常识上来——在上面的例子中,如果列表较小的话,很明显是先进行排序更快,因此如果你可以在排序前先进行筛选,那通常都是比较好的做法。其他不显而易见的问题仍然可以通过恰当的工具来定位。因此了解这些工具是有好处的。
问题14
你有过失败的经历吗?
错误的答案
我从来没有失败过!
为什么提这个问题?
恰当地回答这个问题说明你用于承认错误,为自己的错误负责,并且能够从错误中学习。如果你想变得对别人有帮助的话,所有这些都是特别重要的。如果你真的是个完人,那就太糟了,回答这个问题的时候你可能都有点创意了。
问题15
你有实施过个人项目吗?
真的?
如果做过个人项目,这说明从更新自己的技能水平方面来看,你愿意比最低要求付出更多的努力。如果你有维护的个人项目,工作之外也坚持编码,那么你的雇主就更可能把你视作为会增值的资产。即使他们不问这个问题,我也认为谈谈这个话题很有帮助。
结语
我给出的这些问题时,有意涉及了多个领域。而且答案也是特意写的较为啰嗦。在编程面试中,你需要展示你对语言的理解,如果你能简要地说清楚,那请务必那样做。我尽量在答案中提供了足够的信息,即使是你之前从来没有了解过这些领域,你也可以从答案中学到些东西。我希望本文能够帮助你找到满意的工作。