android在不同的版本都会优化“UI的流畅性”问题,但是直到在android 4.1版本中做了有效的优化,这就是Project Butter。
Project Butter加入了三个核心元素:VSYNC、Triple Buffer和Choreographer。其中,VSYNC是理解Project Buffer的核心。VSYNC是Vertical Synchronization的缩写 也就是“垂直同步”
- VSYNC:产生一个中断信号
- Triple Buffer:当双Buffer不够使用时,该系统可分配第三块Buffer
- Choreographer:这个了用来接受一个VSYNC信号来统一协调UI更新
检测应用卡顿的方案,Android系统每隔16.6ms发出VSYNC信号,来通知界面进行输入、动画、绘制等动作,每一次同步的周期为16.6ms,代表一帧的刷新频率,理论上来说两次回调的时间周期应该在16.6ms,如果超过了16.6ms我们则认为发生了卡顿,利用两次回调间的时间周期来判断是否发生卡顿 这个方案的原理主要是通过Choreographer类设置它的FrameCallback函数,当每一帧被渲染时会触发回调FrameCallback, FrameCallback回调void doFrame (long frameTimeNanos)函数。一次界面渲染会回调doFrame方法,如果两次doFrame之间的间隔大于16.6ms说明发生了卡顿。
监控应用的流畅度一般都是通过Choreographer类的postFrameCallback方法注册一个VSYNC回调事件
public static void start(final Builder builder) {
Choreographer.getInstance().postFrameCallback(new Choreographer.FrameCallback() {
long lastFrameTimeNanos = 0;
long currentFrameTimeNanos = 0;
@Override
public void doFrame(long frameTimeNanos) {
if (lastFrameTimeNanos == 0) {
lastFrameTimeNanos = frameTimeNanos;
LogMonitor.getInstance().setFrequency(builder.frame * 17 / 2);
if (builder.targetPackageName != null) {
LogMonitor.getInstance().setTargetPackageName(builder.targetPackageName);
}
LogMonitor.getInstance().setDumpListener(builder.onDumpListener);
}
currentFrameTimeNanos = frameTimeNanos;
skipFrameCount = skipFrameCount(lastFrameTimeNanos, currentFrameTimeNanos, deviceRefreshRateMs);
LogMonitor.getInstance().setFrame(skipFrameCount);
if (LogMonitor.getInstance().isMonitor()) {
LogMonitor.getInstance().removeMonitor();
}
LogMonitor.getInstance().startMonitor();
lastFrameTimeNanos = currentFrameTimeNanos;
Choreographer.getInstance().postFrameCallback(this);
}
});
}
复制代码
postFrameCallback(FrameCallback callback)的源码
public void postFrameCallback(FrameCallback callback) {
postFrameCallbackDelayed(callback, 0);
}
......
public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
if (callback == null) {
throw new IllegalArgumentException("callback must not be null");
}
postCallbackDelayedInternal(CALLBACK_ANIMATION,
callback, FRAME_CALLBACK_TOKEN, delayMillis);
}
复制代码
postFrameCallback最终调用了postCallbackDelayedInternal()方法,我们在跟踪进去这个方法
postCallbackDelayedInternal()
private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
if (DEBUG_FRAMES) {
Log.d(TAG, "PostCallback: type=" + callbackType
+ ", action=" + action + ", token=" + token
+ ", delayMillis=" + delayMillis);
}
synchronized (mLock) {
final long now = SystemClock.uptimeMillis();
final long dueTime = now + delayMillis;
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
if (dueTime <= now) {
scheduleFrameLocked(now);
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}
复制代码
postCallbackDelayedInternal方法中首选通过 mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);将我们注册的回调接口添加到mCallbackQueues队列中。每种类型的callback按照设置的执行时间(dueTime)顺序排序分别保存在一个单链表中。
之后判断执行时间是否为当前时间,如果是直接调用scheduleFrameLocked(now);否则发送一个MSG_DO_SCHEDULE_CALLBACK一个消息,其实发送信息最后也是调用scheduleFrameLocked(now)方法,所以我们直接看这个方法的代码
scheduleFrameLocked
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) {//默认为true
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame on vsync.");
}
// If running on the Looper thread, then schedule the vsync immediately,
// otherwise post a message to schedule the vsync from the UI thread
// as soon as possible.
if (isRunningOnLooperThreadLocked()) { //是否是主线程
scheduleVsyncLocked();
} else {//发消息给主线程
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
}
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}
复制代码
USE_VSYNC 默认是 true,表示默认开启垂直同步
private static final boolean USE_VSYNC = SystemProperties.getBoolean(
"debug.choreographer.vsync", true);
复制代码
scheduleVsyncLocked方法的代码
private void scheduleVsyncLocked() {
mDisplayEventReceiver.scheduleVsync();
}
......
/**
* Schedules a single vertical sync pulse to be delivered when the next
* display frame begins.
*/
public void scheduleVsync() {
if (mReceiverPtr == 0) {
Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
+ "receiver has already been disposed.");
} else {
nativeScheduleVsync(mReceiverPtr);
}
}
复制代码
最终通过调native方法nativeScheduleVsync(mReceiverPtr)向底层注册我们的回调事件。 到此我们向系统注册“垂直同步”事件的流程已经结束。所有的流程如下:
接收VSYNS信号
VSYNC信号怎么同步到我们的代码的呢,Java 层接收 VSYNC 的入口是 dispatchVsync(),也就是说每当系统底层产生一个VSYNC信号,系统都会回调这个方法。
dispatchVsync()
// Called from native code.
@SuppressWarnings("unused")
private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
onVsync(timestampNanos, builtInDisplayId, frame);
}
复制代码
private final class FrameDisplayEventReceiver extends DisplayEventReceiver
implements Runnable {
private boolean mHavePendingVsync;
private long mTimestampNanos;
private int mFrame;
public FrameDisplayEventReceiver(Looper looper, int vsyncSource) {
super(looper, vsyncSource);
}
@Override
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
......
mTimestampNanos = timestampNanos;
mFrame = frame;
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
@Override
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame);
}
}
复制代码
onVsync方法中,Message.obtain(mHandler, this) 所以 msg.callback 是 this,最后会调用到 msg.callback.run(),也就是 FrameDisplayEventReceiver run(),进入 doFrame() mTimestampNanos,它是来自 onVsync 的 timestampNanos 参数,代表产生 VSYNC 的时间
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
if (!mFrameScheduled) {
return; // no work to do
}
if (DEBUG_JANK && mDebugPrintNextFrameTimeDelta) {
mDebugPrintNextFrameTimeDelta = false;
Log.d(TAG, "Frame time delta: "
+ ((frameTimeNanos - mLastFrameTimeNanos) * 0.000001f) + " ms");
}
long intendedFrameTimeNanos = frameTimeNanos;
startNanos = System.nanoTime();//正真开始的时间
final long jitterNanos = startNanos - frameTimeNanos;
if (jitterNanos >= mFrameIntervalNanos) {
// 时间差除以每帧时间间隔,来计算丢掉了几帧。其中mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());一般刷新率为60,时间间隔为16.6ms
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
// 取余数,作为帧偏移时间
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
if (DEBUG_JANK) {
Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms "
+ "which is more than the frame interval of "
+ (mFrameIntervalNanos * 0.000001f) + " ms! "
+ "Skipping " + skippedFrames + " frames and setting frame "
+ "time to " + (lastFrameOffset * 0.000001f) + " ms in the past.");
}
frameTimeNanos = startNanos - lastFrameOffset;
}
if (frameTimeNanos < mLastFrameTimeNanos) {
if (DEBUG_JANK) {
Log.d(TAG, "Frame time appears to be going backwards. May be due to a "
+ "previously skipped frame. Waiting for next vsync.");
}
scheduleVsyncLocked();
return;
}
mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
mFrameScheduled = false;
mLastFrameTimeNanos = frameTimeNanos;
}
//执行对应的callBack
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS);
mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
} finally {
AnimationUtils.unlockAnimationClock();
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
if (DEBUG_FRAMES) {
final long endNanos = System.nanoTime();
Log.d(TAG, "Frame " + frame + ": Finished, took "
+ (endNanos - startNanos) * 0.000001f + " ms, latency "
+ (startNanos - frameTimeNanos) * 0.000001f + " ms.");
}
}
复制代码
如果你平时注意卡顿的日志信息,那么下面这个段log就不会陌生了
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
复制代码
SKIPPED_FRAME_WARNING_LIMIT的默认值是30,也就说当我们的程序卡顿大于30时会打印这条log信息 doFrame()方法最后调用doCallbacks()来处理用户输入,动画,绘制等UI操作。
doCallbacks()方法
void doCallbacks(int callbackType, long frameTimeNanos) {
CallbackRecord callbacks;
synchronized (mLock) {
// We use "now" to determine when callbacks become due because it's possible
// for earlier processing phases in a frame to post callbacks that should run
// in a following phase, such as an input event that causes an animation to start.
final long now = System.nanoTime();
callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(
now / TimeUtils.NANOS_PER_MS);
if (callbacks == null) {
return;
}
mCallbacksRunning = true;
......
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]);
for (CallbackRecord c = callbacks; c != null; c = c.next) {
if (DEBUG_FRAMES) {
Log.d(TAG, "RunCallback: type=" + callbackType
+ ", action=" + c.action + ", token=" + c.token
+ ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime));
}
c.run(frameTimeNanos);
}
} finally {
synchronized (mLock) {
mCallbacksRunning = false;
do {
final CallbackRecord next = callbacks.next;
recycleCallbackLocked(callbacks);
callbacks = next;
} while (callbacks != null);
}
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
复制代码
extractDueCallbacksLocked 是取出执行时间在当前时间之前的所有 CallbackRecord,CallbackRecord 是一个链表,然后遍历 callbacks 执行 run 方法
private static final class CallbackRecord {
public CallbackRecord next;
public long dueTime;
public Object action; // Runnable or FrameCallback
public Object token;
public void run(long frameTimeNanos) {
if (token == FRAME_CALLBACK_TOKEN) {
((FrameCallback)action).doFrame(frameTimeNanos);
} else {
((Runnable)action).run();
}
}
}
复制代码
如果们通过postFrameCallback(FrameCallback)注册回调事件,下一次 Choreographer doFrame 时就会调用 FrameCallback.doFrame,还记得刚开始我们注册FrameCallback是系统为封装FrameCallback的类型吗 正是FRAME_CALLBACK_TOKEN,因此这里会走 ((FrameCallback)action).doFrame(frameTimeNanos);,为什么我们每次都需要注册一个下呢,这是因为每次“垂直同步”都会删除调用的注册事件。 如果这个CallbackRecord是view动画或绘制就会调用((Runnable)action).run();
下面是收到VSYNC的流程图
小结
- Choreographer是线程单例的,而且必须要和一个Looper绑定,因为其内部有一个Handler需要和Looper绑定。
- 首先我们通过postFrameCallback(FrameCallback callback)方法,最终通过native方法 nativeScheduleVsync(mReceiverPtr)和一个VSYNC绑定。
- 当下一次VSYNC信号来时,回调我们绑定的接口,然后统计两针之间的时间,判断是否掉帧
- 如果掉帧获取卡顿日志,继续监控下个VSYNC信号