RPC服务路由就近策略 rpc 服务发现_提供方

服务发现:到底是要CP还是AP?

回顾

“怎么设计一个灵活的 RPC 框架”

  • 总结起来,就是怎么在 RPC 框架中应用插件,用插件方式构造一个基于微内核的 RPC 框架,其关键点就是“插件化”。

服务发现

为了高可用,在生产环境中服务提供方都是以集群的方式对外提供服务,集群里面的这些 IP 随时可能变化,我们也需要用一本“通信录”及时获取到对应的服务节点,这个获取的过程我们一般叫作“服务发现”。

对于服务调用方和服务提供方来说,其契约就是接口,相当于“通信录”中的姓名,服务节点就是提供该契约的一个具体实例。服务 IP 集合作为“通信录”中的地址,从而可以通过接口获取服务 IP 的集合来完成服务的发现。这就是我要说的 RPC 框架的服务发现机制

示意图:

RPC服务路由就近策略 rpc 服务发现_服务发现_02

  • 服务注册:在服务提供方启动的时候,将对外暴露的接口注册到注册中心之中,注册中心将这个服务节点的 IP 和接口保存下来。
  • 服务订阅:在服务调用方启动的时候,去注册中心查找并订阅服务提供方的 IP,然后缓存到本地,并用于后续的远程调用。

为什么不用DNS

  • DNS 采取了多级缓存机制,一般配置的缓存时间较长,特别是 JVM 的默认缓存是永久有效的,所以说服务调用者不能及时感知到服务节点的变化。

基于ZooKeeper的服务发现

  • 服务发现的本质,就是完成接口跟服务提供者 IP 之间的映射
  • 搭建一个 ZooKeeper 集群作为注册中心集群,服务注册的时候只需要服务节点向 ZooKeeper 节点写入注册信息即可,利用 ZooKeeper 的 Watcher 机制完成服务订阅与服务下发功能

整体流程图:

RPC服务路由就近策略 rpc 服务发现_提供方_03

  • 服务平台管理端先在 ZooKeeper 中创建一个服务根路径,可以根据接口名命名(例如:/service/com.demo.xxService),在这个路径再创建服务提供方目录与服务调用方目录(例如:provider、consumer),分别用来存储服务提供方的节点信息和服务调用方的节点信息。
  • 当服务提供方发起注册时,会在服务提供方目录中创建一个临时节点,节点中存储该服务提供方的注册信息。
  • 当服务调用方发起订阅时,则在服务调用方目录中创建一个临时节点,节点中存储该服务调用方的信息,同时服务调用方 watch 该服务的服务提供方目录(/service/com.demo.xxService/provider)中所有的服务节点数据。
  • 当服务提供方目录下有节点数据发生变更时,ZooKeeper 就会通知给发起订阅的服务调用方。

ZooKeeper 本身性能问题

  • 当连接到 ZooKeeper 的节点数量特别多,对 ZooKeeper 读写特别频繁,且 ZooKeeper 存储的目录达到一定数量的时候,ZooKeeper 将不再稳定,CPU 持续升高,最终宕机

基于消息总线的最终一致性的注册中心

ZooKeeper 的一大特点就是强一致性,ZooKeeper 集群的每个节点的数据每次发生更新操作,都会通知其它 ZooKeeper 节点同时执行更新。它要求保证每个节点的数据能够实时的完全一致,这也就直接导致了 ZooKeeper 集群性能上的下降

因为要求最终一致性,我们可以考虑采用消息总线机制。

  • 注册数据可以全量缓存在每个注册中心内存中,通过消息总线来同步数据。当有一个注册中心节点接收到服务节点注册时,会产生一个消息推送给消息总线,再通过消息总线通知给其它注册中心节点更新数据并进行服务下发,从而达到注册中心间数据最终一致性

具体流程

RPC服务路由就近策略 rpc 服务发现_服务发现_04

  • 当有服务上线,注册中心节点收到注册请求,服务列表数据发生变化,会生成一个消息,推送给消息总线,每个消息都有整体递增的版本。
  • 消息总线会主动推送消息到各个注册中心,同时注册中心也会定时拉取消息。
  • 对于获取到消息的在消息回放模块里面回放,只接受大于本地版本号的消息,小于本地版本号的消息直接丢弃,从而实现最终一致性。
  • 消费者订阅可以从注册中心内存拿到指定接口的全部服务实例,并缓存到消费者的内存里面。采用推拉模式,消费者可以及时地拿到服务实例增量变化情况,并和内存中的缓存数据进行合并。

采用两级缓存,注册中心和消费者的内存缓存,通过异步推拉模式来确保最终一致性。

通过消息总线的方式,我们就可以完成注册中心集群间数据变更的通知,保证数据的最终一致性,并能及时地触发注册中心的服务下发操作。服务发现的特性是允许我们在设计超大规模集群服务发现系统的时候,舍弃强一致性,更多地考虑系统的健壮性。最终一致性才是分布式系统设计中更为常用的策略。