目录
程序源代码
程序源代码
import sys
import pygame
# 要显示的窗口的宽、高
WIDTH, HEIGHT = 750, 667
class ClickBox(pygame.sprite.Sprite):
"""
选中棋子对象
"""
singleton = None
def __new__(cls, *args, **kwargs):
if cls.singleton is None:
cls.singleton = super().__new__(cls)
return cls.singleton
def __init__(self, screen, row, col, team):
super().__init__()
self.image = pygame.image.load("images/r_box.png")
self.rect = self.image.get_rect()
self.row, self.col = row, col
self.rect.topleft = (50 + self.col * 57, 50 + self.row * 57)
self.screen = screen
self.team = team
@classmethod
def show(cls):
if cls.singleton:
cls.singleton.screen.blit(cls.singleton.image, cls.singleton.rect)
@classmethod
def clean(cls):
"""
清理上次的对象
"""
cls.singleton = None
class Dot(pygame.sprite.Sprite):
"""
可落棋子类
"""
group = list()
def __init__(self, screen, position):
super().__init__()
self.image = pygame.image.load("images/dot2.png")
self.rect = self.image.get_rect()
self.row, self.col = position # 将元组拆包
self.rect.topleft = (60 + self.col * 57, 60 + self.row * 57)
self.group.append(self)
self.screen = screen
@classmethod
def show(cls):
for dot in cls.group:
dot.screen.blit(dot.image, dot.rect)
@classmethod
def clean_last_postion(cls):
"""
清除上次落子位置
"""
cls.group.clear()
@classmethod
def click(cls):
"""
点击棋子
"""
for dot in cls.group:
if pygame.mouse.get_pressed()[0] and dot.rect.collidepoint(pygame.mouse.get_pos()):
print("被点击了「可落子」对象")
return dot
class Chess(pygame.sprite.Sprite):
"""
棋子类
"""
def __init__(self, screen, chess_name, row, col):
self.screen = screen
self.image = pygame.image.load("images/" + chess_name + ".png")
self.rect = self.image.get_rect()
self.rect.topleft = (50 + col * 57, 50 + row * 57)
self.team = chess_name[0] # 队伍(红方 r、黑方b)
self.name = chess_name[2] # 名字(炮p、马m等)
self.row = row
self.col = col
def show(self):
self.screen.blit(self.image, self.rect)
@staticmethod
def click(player, chesses):
"""
点击棋子
"""
for chess in chesses:
if pygame.mouse.get_pressed()[0] and chess.rect.collidepoint(pygame.mouse.get_pos()):
if player == chess.team:
print("被点击了")
return chess
def update_postion(self, new_row, new_col):
"""
更新要显示的图片的坐标
"""
self.row = new_row
self.col = new_col
self.rect.topleft = (50 + new_col * 57, 50 + new_row * 57)
class ChessBoard(object):
"""
棋盘类
"""
def __init__(self, screen):
self.screen = screen
self.image = pygame.image.load("images/bg.png")
self.topleft = (50, 50)
self.__create_default_chess()
def __create_default_chess(self):
"""
创建默认棋子
"""
self.map = [
["b_c", "b_m", "b_x", "b_s", "b_j", "b_s", "b_x", "b_m", "b_c"],
["", "", "", "", "", "", "", "", ""],
["", "b_p", "", "", "", "", "", "b_p", ""],
["b_z", "", "b_z", "", "b_z", "", "b_z", "", "b_z"],
["", "", "", "", "", "", "", "", ""],
["", "", "", "", "", "", "", "", ""],
["r_z", "", "r_z", "", "r_z", "", "r_z", "", "r_z"],
["", "r_p", "", "", "", "", "", "r_p", ""],
["", "", "", "", "", "", "", "", ""],
["r_c", "r_m", "r_x", "r_s", "r_j", "r_s", "r_x", "r_m", "r_c"],
]
for row, line in enumerate(self.map):
for col, chess_name in enumerate(line):
if chess_name:
# 将创建的棋子添加到属性map中
self.map[row][col] = Chess(self.screen, chess_name, row, col)
else:
self.map[row][col] = None
def show(self):
# 显示棋盘
self.screen.blit(self.image, self.topleft)
# 显示棋盘上的所有棋子
for line_chess in self.map:
for chess in line_chess:
if chess:
chess.show()
def get_put_down_postion(self, clicked_chess):
"""
计算当前棋子可以移动的位置
"""
# 存储当前棋子可以落子的位置
all_position = list()
# 拿到当前棋子的行、列
row, col = clicked_chess.row, clicked_chess.col
# 拿到当前棋子的team,即时红方r还是黑方b
team = clicked_chess.team
# 计算当前选中棋子的所有可以落子位置
if clicked_chess.name == "p": # 炮
# 一行
direction_left_chess_num = 0
direction_right_chess_num = 0
for i in range(1, 9):
# 计算当前行中,棋子左边与右边可以落子的位置
# 左边位置没有越界
if direction_left_chess_num >= 0 and col - i >= 0:
if not self.map[row][col - i] and direction_left_chess_num == 0:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row, col - i))
elif self.map[row][col - i]:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
direction_left_chess_num += 1
if direction_left_chess_num == 2 and self.map[row][col - i].team != team:
all_position.append((row, col - i))
direction_left_chess_num = -1 # 让其不能够在下次for循环时再次判断
# 右边位置没有越界
if direction_right_chess_num >= 0 and col + i <= 8:
if not self.map[row][col + i] and direction_right_chess_num == 0:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row, col + i))
elif self.map[row][col + i]:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
direction_right_chess_num += 1
if direction_right_chess_num == 2 and self.map[row][col + i].team != team:
all_position.append((row, col + i))
direction_right_chess_num = -1
# 一列
direction_up_chess_num = 0
direction_down_chess_num = 0
for i in range(1, 10): # 这样就让i从1开始,而不是从0
# 计算当前列中,棋子上边与下边可以落子的位置
# 上边位置没有越界
if direction_up_chess_num >= 0 and row - i >= 0:
if not self.map[row - i][col] and direction_up_chess_num == 0:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row - i, col))
elif self.map[row - i][col]:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
direction_up_chess_num += 1
if direction_up_chess_num == 2 and self.map[row - i][col].team != team:
all_position.append((row - i, col))
direction_up_chess_num = -1
# 下边位置没有越界
if direction_down_chess_num >= 0 and row + i <= 9:
if not self.map[row + i][col] and direction_down_chess_num == 0:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row + i, col))
elif self.map[row + i][col]:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
direction_down_chess_num += 1
if direction_down_chess_num == 2 and self.map[row + i][col].team != team:
all_position.append((row + i, col))
direction_down_chess_num = -1
elif clicked_chess.name == "z": # 卒
if team == "r": # 红方
if row - 1 >= 0: # 只能向上移动
if not self.map[row - 1][col] or self.map[row - 1][col].team != team:
all_position.append((row - 1, col))
else: # 黑方
if row + 1 <= 9: # 只能向下移动
if not self.map[row + 1][col] or self.map[row + 1][col].team != team:
all_position.append((row + 1, col))
# 左右判断
if (team == "r" and 0 <= row <= 4) or (team == "b" and 5 <= row <= 9): # 左、右一步
# 左
if col - 1 >= 0 and (not self.map[row][col - 1] or self.map[row][col - 1].team != team):
all_position.append((row, col - 1))
# 右
if col + 1 <= 8 and (not self.map[row][col + 1] or self.map[row][col + 1].team != team):
all_position.append((row, col + 1))
elif clicked_chess.name == "c": # 车
# 一行
left_stop = False
right_stop = False
for i in range(1, 9):
# 左边位置没有越界且没有遇到任何一个棋子
if not left_stop and col - i >= 0:
if not self.map[row][col - i]:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row, col - i))
else:
left_stop = True
if self.map[row][col - i].team != team:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
all_position.append((row, col - i))
# 右边位置没有越界且没有遇到任何一个棋子
if not right_stop and col + i <= 8:
if not self.map[row][col + i]:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row, col + i))
else:
right_stop = True
if self.map[row][col + i].team != team:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
all_position.append((row, col + i))
# 一列
up_stop = False
down_stoop = False
for i in range(1, 10):
# 上边位置没有越界且没有遇到任何一个棋子
if not up_stop and row - i >= 0:
if not self.map[row - i][col]:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row - i, col))
else:
up_stop = True
if self.map[row - i][col].team != team:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
all_position.append((row - i, col))
# 下边位置没有越界且没有遇到任何一个棋子
if not down_stoop and row + i <= 9:
if not self.map[row + i][col]:
# 如果没有棋子,则将当前位置组成一个元组,添加到列表
all_position.append((row + i, col))
else:
down_stoop = True
if self.map[row + i][col].team != team:
# 如果当前位置有棋子,那么就判断是否能够吃掉它
all_position.append((row + i, col))
elif clicked_chess.name == "m": # 马
# 需要判断的是4个方向,每个方向对应2个位置
# 上方
if row - 1 >= 0 and not self.map[row - 1][col]: # 如果当前棋子没有被蹩马腿,那么再对这个方向的2个位置进行判断
# 左上
if row - 2 >= 0 and col - 1 >= 0 and (not self.map[row - 2][col - 1] or self.map[row - 2][col - 1].team != team):
all_position.append((row - 2, col - 1))
# 右上
if row - 2 >= 0 and col + 1 <= 8 and (not self.map[row - 2][col + 1] or self.map[row - 2][col + 1].team != team):
all_position.append((row - 2, col + 1))
# 下方
if row + 1 <= 9 and not self.map[row + 1][col]: # 如果当前棋子没有被蹩马腿,那么再对这个方向的2个位置进行判断
# 左下
if row + 2 >= 0 and col - 1 >= 0 and (not self.map[row + 2][col - 1] or self.map[row + 2][col - 1].team != team):
all_position.append((row + 2, col - 1))
# 右下
if row + 2 >= 0 and col + 1 <= 8 and (not self.map[row + 2][col + 1] or self.map[row + 2][col + 1].team != team):
all_position.append((row + 2, col + 1))
# 左方
if col - 1 >= 0 and not self.map[row][col - 1]: # 如果当前棋子没有被蹩马腿,那么再对这个方向的2个位置进行判断
# 左上2(因为有左上了,暂且称为左上2吧)
if row - 1 >= 0 and col - 2 >= 0 and (not self.map[row - 1][col - 2] or self.map[row - 1][col - 2].team != team):
all_position.append((row - 1, col - 2))
# 左下2
if row + 1 <= 9 and col - 2 >= 0 and (not self.map[row + 1][col - 2] or self.map[row + 1][col - 2].team != team):
all_position.append((row + 1, col - 2))
# 右方
if col + 1 <= 8 and not self.map[row][col + 1]: # 如果当前棋子没有被蹩马腿,那么再对这个方向的2个位置进行判断
# 右上2(因为有右上了,暂且称为右上2吧)
if row - 1 >= 0 and col + 2 <= 8 and (not self.map[row - 1][col + 2] or self.map[row - 1][col + 2].team != team):
all_position.append((row - 1, col + 2))
# 右下2
if row + 1 <= 9 and col + 2 <= 8 and (not self.map[row + 1][col + 2] or self.map[row + 1][col + 2].team != team):
all_position.append((row + 1, col + 2))
elif clicked_chess.name == "x": # 象
# 因为象是不能过河的,所以要计算出它们可以移动的行的范围
row_start, row_stop = (0, 4) if team == "b" else (5, 9)
# 有4个方向的判断(没有越界,且没有蹩象腿)
if row - 2 >= row_start and col - 2 >= 0 and not self.map[row - 1][col - 1]: # 左上
if not self.map[row - 2][col - 2] or self.map[row - 2][col - 2].team != team:
all_position.append((row - 2, col - 2))
if row - 2 >= row_start and col + 2 <= 8 and not self.map[row - 1][col + 1]: # 右上
if not self.map[row - 2][col + 2] or self.map[row - 2][col + 2].team != team:
all_position.append((row - 2, col + 2))
if row + 2 <= row_stop and col - 2 >= 0 and not self.map[row + 1][col - 1]: # 左下
if not self.map[row + 2][col - 2] or self.map[row + 2][col - 2].team != team:
all_position.append((row + 2, col - 2))
if row + 2 <= row_stop and col + 2 <= 8 and not self.map[row + 1][col + 1]: # 右下
if not self.map[row + 2][col + 2] or self.map[row + 2][col + 2].team != team:
all_position.append((row + 2, col + 2))
elif clicked_chess.name == "s": # 士
# 因为士是不能过河的,所以要计算出它们可以移动的行的范围
row_start, row_stop = (0, 2) if team == "b" else (7, 9)
if row - 1 >= row_start and col - 1 >= 3 and (not self.map[row - 1][col - 1] or self.map[row - 1][col - 1].team != team):
all_position.append((row - 1, col - 1))
if row - 1 >= row_start and col + 1 <= 5 and (not self.map[row - 1][col + 1] or self.map[row - 1][col + 1].team != team):
all_position.append((row - 1, col + 1))
if row + 1 <= row_stop and col - 1 >= 3 and (not self.map[row + 1][col - 1] or self.map[row + 1][col - 1].team != team):
all_position.append((row + 1, col - 1))
if row + 1 <= row_stop and col + 1 <= 5 and (not self.map[row + 1][col + 1] or self.map[row + 1][col + 1].team != team):
all_position.append((row + 1, col + 1))
elif clicked_chess.name == "j": # 将
# 因为"将"是不能过河的,所以要计算出它们可以移动的行的范围
row_start, row_stop = (0, 2) if team == "b" else (7, 9)
# 有4个方向的判断
if row - 1 >= row_start and (not self.map[row - 1][col] or self.map[row - 1][col].team != team):
all_position.append((row - 1, col))
if row + 1 <= row_stop and (not self.map[row + 1][col] or self.map[row + 1][col].team != team):
all_position.append((row + 1, col))
if col - 1 >= 3 and (not self.map[row][col - 1] or self.map[row][col - 1].team != team):
all_position.append((row, col - 1))
if col + 1 <= 5 and (not self.map[row][col + 1] or self.map[row][col + 1].team != team):
all_position.append((row, col + 1))
all_position = self.judge_delete_position(all_position, clicked_chess)
# 返回可以落子的所有位置
return all_position
def judge_delete_position(self, all_position, clicked_chess):
"""
删除被"将军"的位置
"""
# 定义要删除的列表
deleting_position = list()
# 判断这些位置,是否会导致被"将军",如果是则从列表中删除这个位置
for row, col in all_position:
# 1. 备份
# 备份当前棋子位置
old_row, old_col = clicked_chess.row, clicked_chess.col
# 备份要落子的位置的棋子(如果没有,则为None)
position_chess_backup = self.map[row][col]
# 2. 挪动位置
# 移动位置
self.map[row][col] = self.map[old_row][old_col]
# 修改棋子的属性
self.map[row][col].update_postion(row, col)
# 清楚之前位置为None
self.map[old_row][old_col] = None
# 3. 判断对方是否可以发起"将军"
if self.judge_attack_general("b" if clicked_chess.team == "r" else "r"):
deleting_position.append((row, col))
# 4. 恢复到之前位置
self.map[old_row][old_col] = self.map[row][col]
self.map[old_row][old_col].update_postion(old_row, old_col)
self.map[row][col] = position_chess_backup
# 5. 删除不能落子的位置
all_position = list(set(all_position) - set(deleting_position))
return all_position
def move_chess(self, new_row, new_col):
"""
落子
"""
# 得到要移动的棋子的位置
old_row, old_col = ClickBox.singleton.row, ClickBox.singleton.col
print("旧位置:", old_row, old_col, "新位置:", new_row, new_col)
# 移动位置
self.map[new_row][new_col] = self.map[old_row][old_col]
# 修改棋子的属性
self.map[new_row][new_col].update_postion(new_row, new_col)
# 清楚之前位置为None
self.map[old_row][old_col] = None
def judge_attack_general(self, attact_player):
"""
判断 attact_player方是否 将对方的军
"""
# 1. 找到对方"将"的位置
general_player = "r" if attact_player == "b" else "b"
general_position = self.get_general_position(general_player)
# 2. 遍历我方所有的棋子
for row, line in enumerate(self.map):
for col, chess in enumerate(line):
if chess and chess.team == attact_player:
if chess.name == "z": # 兵
# 传递5个参数(攻击方的标识,攻击方row,攻击方col,对方将row,对方将col)
if self.judge_z_attack(chess.team, chess.row, chess.col, *general_position):
return True
elif chess.name == "p": # 炮
if self.judge_c_and_p_attack(chess.name, chess.row, chess.col, *general_position):
return True
elif chess.name == "c": # 车
if self.judge_c_and_p_attack(chess.name, chess.row, chess.col, *general_position):
return True
elif chess.name == "m": # 马
if self.judge_m_attack(chess.row, chess.col, *general_position):
return True
elif chess.name == "x": # 象
pass
elif chess.name == "s": # 士
pass
elif chess.name == "j": # 将
if self.judge_j_attack(chess.row, chess.col, *general_position):
return True
def judge_j_attack(self, attack_row, attack_col, general_row, general_col):
"""
判断 两个将是否相对
"""
if attack_col == general_col:
# 在同一列
min_row, max_row = (attack_row, general_row) if attack_row < general_row else (general_row, attack_row)
chess_num = 0
for i in range(min_row + 1, max_row):
if self.map[i][general_col]:
chess_num += 1
if chess_num == 0:
return True
def judge_m_attack(self, attack_row, attack_col, general_row, general_col):
"""
判断马是否攻击到"将"
"""
if attack_row == general_row or attack_col == general_col:
return False
else:
# "马走日",利用这个特点会得出,如果此马能够攻击到"将",那么两条边的平方和一定是5
col_length = (attack_col - general_col) ** 2
row_length = (attack_row - general_row) ** 2
if col_length + row_length == 5:
# 判断是否蹩马腿
if col_length == 1:
if general_row < attack_row and not self.map[attack_row - 1][attack_col]:
return True
elif general_row > attack_row and not self.map[attack_row + 1][attack_col]:
return True
elif col_length == 4:
if general_col < attack_col and not self.map[attack_row][attack_col - 1]:
return True
elif general_col > attack_col and not self.map[attack_row][attack_col + 1]:
return True
def judge_c_and_p_attack(self, attack_chess_name, attack_row, attack_col, general_row, general_col):
"""
判断"车"、"炮"能否攻击到对方"将"
"""
check_chess_num = 1 if attack_chess_name == "p" else 0
chess_num = 0
if attack_row == general_row:
# 在同一行
min_col, max_col = (attack_col, general_col) if attack_col < general_col else (general_col, attack_col)
for i in range(min_col + 1, max_col):
if self.map[attack_row][i]:
chess_num += 1
if chess_num == check_chess_num:
return True
elif attack_col == general_col:
# 在同一列
min_row, max_row = (attack_row, general_row) if attack_row < general_row else (general_row, attack_row)
for i in range(min_row + 1, max_row):
if self.map[i][general_col]:
chess_num += 1
if chess_num == check_chess_num:
return True
def judge_z_attack(self, attack_team, attack_row, attack_col, general_row, general_col):
"""
判断卒是否攻击到"将"
"""
if attack_team == "r" and attack_row < general_row:
return False
elif attack_team == "b" and attack_row > general_row:
return False
elif (attack_row - general_row) ** 2 + (attack_col - general_col) ** 2 == 1:
return True
def get_general_position(self, general_player):
"""
找到general_player标记的一方的将的位置
"""
for row, line in enumerate(self.map):
for col, chess in enumerate(line):
if chess and chess.team == general_player and chess.name == "j":
return chess.row, chess.col
def judge_win(self, attack_player):
"""
判断是否获胜
"""
# 依次判断是否被攻击方的所有棋子,是否有阻挡攻击的可能
for line_chesses in self.map:
for chess in line_chesses:
if chess and chess.team != attack_player:
move_position_list = self.get_put_down_postion(chess)
if move_position_list: # 只要找到一个可以移动的位置,就表示没有失败,还是有机会的
return False
return True
class Game(object):
"""
游戏类
"""
def __init__(self, screen):
self.screen = screen
self.player = "r" # 默认走棋的为红方r
self.player_tips_r_image = pygame.image.load("images/red.png")
self.player_tips_r_image_topleft = (550, 500)
self.player_tips_b_image = pygame.image.load("images/black.png")
self.player_tips_b_image_topleft = (550, 100)
self.show_attack = False
self.show_attack_count = 0
self.show_attack_time = 100
self.attack_img = pygame.image.load("images/pk.png")
self.show_win = False
self.win_img = pygame.image.load("images/win.png")
self.win_player = None
def get_player(self):
"""
获取当前走棋方
"""
return self.player
def exchange(self):
"""
交换走棋方
"""
self.player = "r" if self.player == "b" else "b"
return self.get_player()
def show(self):
if self.show_win:
if self.win_player == "b":
self.screen.blit(self.win_img, (550, 100))
else:
self.screen.blit(self.win_img, (550, 450))
return
# 通过计时,实现显示一会"将军"之后,就消失
if self.show_attack:
self.show_attack_count += 1
if self.show_attack_count == self.show_attack_time:
self.show_attack_count = 0
self.show_attack = False
if self.player == "r":
self.screen.blit(self.player_tips_r_image, self.player_tips_r_image_topleft)
# 显示"将军"效果
if self.show_attack:
self.screen.blit(self.attack_img, (230, 400))
else:
self.screen.blit(self.player_tips_b_image, self.player_tips_b_image_topleft)
# 显示"将军"效果
if self.show_attack:
self.screen.blit(self.attack_img, (230, 100))
def set_attack(self):
"""
标记"将军"效果
"""
self.show_attack = True
def set_win(self, win_player):
"""
设置获胜方
"""
self.show_win = True
self.win_player = win_player
def main():
# 初始化pygame
pygame.init()
# 创建用来显示画面的对象(理解为相框)
screen = pygame.display.set_mode((WIDTH, HEIGHT))
# 游戏背景图片
background_img = pygame.image.load("images/bg.jpg")
# 创建游戏对象
game = Game(screen)
# 创建一个游戏棋盘对象
chess_board = ChessBoard(screen)
# 创建计时器
clock = pygame.time.Clock()
# 主循环
while True:
# 事件检测(例如点击了键盘、鼠标等)
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
sys.exit() # 退出程序
# 如果游戏没有获胜方,则游戏继续,否则一直显示"获胜"
if not game.show_win:
# 检测是否点击了"可落子"对象
clicked_dot = Dot.click()
if clicked_dot:
chess_board.move_chess(clicked_dot.row, clicked_dot.col)
# 清理「点击对象」、「可落子位置对象」
Dot.clean_last_postion()
ClickBox.clean()
# 判断此棋子走完之后,是否"将军"
if chess_board.judge_attack_general(game.get_player()):
# 检测对方是否可以挽救棋局,如果能挽救,就显示"将军",否则显示"胜利"
if chess_board.judge_win(game.get_player()):
game.set_win(game.get_player())
else:
# 如果攻击到对方,则标记显示"将军"效果
game.set_attack()
# 落子之后,交换走棋方
game.exchange()
# 检查是否点击了棋子
clicked_chess = Chess.click(game.get_player(), [chess for line in chess_board.map for chess in line if chess])
if clicked_chess:
# 创建选中棋子对象
ClickBox(screen, clicked_chess.row, clicked_chess.col, clicked_chess.team)
# 清除之前的所有的可以落子对象
Dot.clean_last_postion()
# 真的点击了棋子,那么计算当前被点击的棋子可以走的位置
all_position = chess_board.get_put_down_postion(clicked_chess)
if all_position:
# 清空上次可落子对象
Dot.clean_last_postion()
# 创建可落子对象
for position in all_position:
Dot(screen, position)
# 显示游戏背景
screen.blit(background_img, (0, 0))
screen.blit(background_img, (0, 270))
screen.blit(background_img, (0, 540))
# 显示棋盘以及棋盘上的棋子
chess_board.show()
# 显示被点击的棋子
ClickBox.show()
# 显示可落子对象
Dot.show()
# 显示游戏相关信息
game.show()
# 显示screen这个相框的内容(此时在这个相框中的内容像照片、文字等会显示出来)
pygame.display.update()
# FPS(每秒钟显示画面的次数)
clock.tick(60) # 通过一定的延时,实现1秒钟能够循环60次
if __name__ == '__main__':
main()