[贝叶斯优化]
简介
贝叶斯优化用于机器学习调参由J. Snoek(2012)提出,主要思想是,给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布。简单的说,就是考虑了上一次参数的信息**,从而更好的调整当前的参数。
他与常规的网格搜索或者随机搜索的区别是:
贝叶斯调参采用高斯过程,考虑之前的参数信息,不断地更新先验;网格搜索未考虑之前的参数信息
贝叶斯调参迭代次数少,速度快;网格搜索速度慢,参数多时易导致维度爆炸
贝叶斯调参针对非凸问题依然稳健;网格搜索针对非凸问题易得到局部优最
理论
介绍贝叶斯优化调参,必须要从两个部分讲起:
高斯过程,用以拟合优化目标函数
贝叶斯优化,包括了“开采”和“勘探”,用以花最少的代价找到最优值
2.1 高斯过程
高斯过程可以用于非线性回归、非线性分类、参数寻优等等。
2.3 缺点和不足
高斯过程核矩阵不好选
例子
目前可以做贝叶斯优化的包非常多,光是python就有:
BayesianOptimization
bayesopt
skopt
本文使用BayesianOptimization为例,利用sklearn的随机森林模型进行分类
安装
pip install bayesian-optimization
前期准备
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score
from bayes_opt import BayesianOptimization
产生随机分类数据集,10个特征, 2个类别
x, y = make_classification(n_samples=1000,n_features=10,n_classes=2)
我们先看看不调参的结果:
rf = RandomForestClassifier()
print(np.mean(cross_val_score(rf, x, y, cv=20, scoring='roc_auc')))
>>> 0.965162
可以看到,不调参的话模型20此交叉验证AUC均值是0.965162,算是一个不错的模型,那么如果用bayes调参结果会怎么样呢
bayes调参初探
我们先定义一个目标函数,里面放入我们希望优化的函数。比如此时,函数输入为随机森林的所有参数,输出为模型交叉验证5次的AUC均值,作为我们的目标函数。因为bayes_opt库只支持最大值,所以最后的输出如果是越小越好,那么需要在前面加上负号,以转为最大值。由于bayes优化只能优化连续超参数,因此要加上int()转为离散超参数。
def rf_cv(n_estimators, min_samples_split, max_features, max_depth):
val = cross_val_score(
RandomForestClassifier(n_estimators=int(n_estimators),
min_samples_split=int(min_samples_split),
max_features=min(max_features, 0.999), # float
max_depth=int(max_depth),
random_state=2
),
x, y, 'roc_auc', cv=5
).mean()
return val
然后我们就可以实例化一个bayes优化对象了:
rf_bo = BayesianOptimization(
rf_cv,
{'n_estimators': (10, 250),
'min_samples_split': (2, 25),
'max_features': (0.1, 0.999),
'max_depth': (5, 15)}
)
里面的第一个参数是我们的优化目标函数,第二个参数是我们所需要输入的超参数名称,以及其范围。超参数名称必须和目标函数的输入名称一一对应。
完成上面两步之后,我们就可以运行bayes优化了!
rf_bo.maximize()
完成的时候会不断地输出结果,如下图所示:
等到程序结束,我们可以查看当前最优的参数和结果:
rf_bo.res['max']
>>> {‘max_params’: {‘max_depth’: 5.819908283575526,
‘max_features’: 0.4951745603509127,
‘min_samples_split’: 2.3110014720414958,
‘n_estimators’: 249.73529231990733},
‘max_val’: 0.9774079407940794}
bayes调参进阶
上面bayes算法得到的参数并不一定最优,当然我们会遇到一种情况,就是我们已经知道有一组或是几组参数是非常好的了,我们想知道其附近有没有更好的。这个操作相当于上文bayes优化中的Explore操作,而bayes_opt库给了我们实现此方法的函数:
rf_bo.explore(
{'n_estimators': [10, 100, 200],
'min_samples_split': [2, 10, 20],
'max_features': [0.1, 0.5, 0.9],
'max_depth': [5, 10, 15]
}
)
这里我们添加了三组较优的超参数,让其在该参数基础上进行explore,可能会得到更好的结果。
同时,我们还可以修改高斯过程的参数,高斯过程主要参数是核函数(kernel),还有其他参数可以参考sklearn.gaussianprocess
gp_param={'kernel':None}
rf_bo.maximize(**gp_param)
最终我们的到参数如下:
{'max_params': {'max_depth': 5.819908283575526,
'max_features': 0.4951745603509127,
'min_samples_split': 2.3110014720414958,
'n_estimators': 249.73529231990733},
'max_val': 0.9774079407940794}
运行交叉验证测试一下:
rf = RandomForestClassifier(max_depth=6, max_features=0.39517, min_samples_split=2, n_estimators=250)
np.mean(cross_val_score(rf, x, y, cv=20, scoring='roc_auc'))
>>> 0.9754953
得到最终结果是0.9755,比之前的0.9652提高了约0.01,做过kaggle的朋友都懂,这在后期已经是非常大的提高了!到后面想提高0.001都极其困难,因此bayes优化真的非常强大!
结束!
Reference
[1] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesianoptimization of machine learning algorithms,” in Advances in neural information processing systems, 2012, pp. 2951–2959.
[2] 高斯过程:http://www.gaussianprocess.org/gpml/
[3] 高斯过程:https://www.zhihu.com/question/46631426?sort=created
[4] 高斯过程:http://www.360doc.com/content/17/0810/05/43535834_678049865.shtml
[5] Brochu E, Cora V M, De Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[J]. arXiv preprint arXiv:1012.2599, 2010.