简介

  OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
  OpenCV的官方网址为:https://opencv.org/, 其Github网址为:https://github.com/opencv
  本文将会介绍OpenCV在人脸检测等方面的应用,使用的语言为Python。
  本文介绍的人脸检测使用OpenCV自带的Haar特征检测,训练好的模型的存放网址为:

  https://github.com/opencv/opencv/tree/master/data/haarcascades ,如下图:

 

openCV Android 人脸对比 opencv自带人脸识别准确率_人脸检测

  本文将会介绍其中的人脸检测(haarcascade_frontalface_default.xml)和猫脸检测(haarcascade_frontalface.xml)。

人脸检测

  利用OpenCV的Python接口实现人脸检测的流程如下:

  • 读取图片
  • 将图片转换为灰度模式,便于人脸检测
  • 利用Haar特征检测图片中的人脸
  • 绘制人脸的矩形区域
  • 显示人脸检测后的图片

  示例的Python代码如下:

# -*- coding: utf-8 -*-
import cv2
import logging

# 设置日志
logging.basicConfig(level = logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
logger = logging.getLogger(__name__)

# 待检测的图片路径
ImagePath = 'E://zhoujielun.jpg'

# 读取图片
logger.info('Reading image...')
image = cv2.imread(ImagePath)
# 把图片转换为灰度模式
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 探测图片中的人脸
logger.info('Detect faces...')
# 获取训练好的人脸的参数数据,进行人脸检测
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors=5,minSize=(3, 3))

search_info = "Find %d face."%len(faces) if len(faces) <= 1 else "Find %d faces."%len(faces)
logger.info(search_info)

# 绘制人脸的矩形区域(红色边框)
for (x, y, w, h) in faces:
    cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2)

# 显示图片
cv2.imshow('Find faces!', image)
cv2.waitKey(0)

  输出结果如下:

2019-09-02 16:23:50,160 - INFO: Reading image...
2019-09-02 16:23:53,028 - INFO: Detect faces...
2019-09-02 16:23:55,989 - INFO: Find 1 face.

  检测后的图片如下:

 

openCV Android 人脸对比 opencv自带人脸识别准确率_人脸检测_02

 

猫脸检测

  人脸检测、人脸识别是近来非常火的技术,那么,用来识别猫脸呢?只需要把之前代码中的模型文件换成haarcascade_frontalface.xml即可。完整的Python代码如下:

# -*- coding: utf-8 -*-
import cv2
import logging

# 设置日志
logging.basicConfig(level = logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
logger = logging.getLogger(__name__)

# 待检测的图片路径
ImagePath = 'E://cat.jpg'

# 读取图片
logger.info('Reading image...')
image = cv2.imread(ImagePath)
# 把图片转换为灰度模式
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 探测图片中的人脸
logger.info('Detect faces...')
# 获取训练好的人脸的参数数据,进行人脸检测
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalcatface.xml')
faces = face_cascade.detectMultiScale(gray,scaleFactor=1.15,minNeighbors=5,minSize=(3, 3))

search_info = "Find %d face."%len(faces) if len(faces) <= 1 else "Find %d faces."%len(faces)
logger.info(search_info)

# 绘制人脸的矩形区域(红色边框)
for (x, y, w, h) in faces:
    cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2)

# 显示图片
cv2.imshow('Find faces!', image)
cv2.waitKey(0)

  输出的结果如下:

2019-09-02 16:27:50,294 - INFO: Reading image...
2019-09-02 16:27:50,303 - INFO: Detect faces...
2019-09-02 16:27:50,411 - INFO: Find 1 face.

  猫脸检测后的效果如下:

openCV Android 人脸对比 opencv自带人脸识别准确率_openCV Android 人脸对比_03

总结

  能检测人脸和猫脸,如果继续探究下去,可以做不少的事情,比如结合深度学习的模型,比如CNN等,可以实现人脸识别啊,物体检测,自动给图像打标签等。