Pytorch搭建ResNet

1、网络架构

ResNet的网络架构这里就不做过多解释,论文原文网络结构如下图

pytorch搭建gan pytorch搭建resnet_python

2、环境搭建

pytorch版本:1.10.2

python版本:3.6.15

pytorch的安装教程可以参照pytorch的安装和入门使用

3、模型搭建

3.1 定义ResNet[18,34]基础残差块BasicBlock

pytorch搭建gan pytorch搭建resnet_ide_02

  1. expansion用来区分残差结构中不同层卷积核的个数,(50,101,152)的残差块中的第三层卷积和个数时是第一层和第二层的4倍。
class BasicBlock(nn.Module):
    expansion = 1
    # 用来区分残差结构中不同层卷积核的个数
    # (50,101,152的残差块中的第三层卷积和个数时是第一层和第二层的4倍,这里就应该写4)
  1. 在init函数中初始化残差块需要用到的结构
  • in_channel:残差块输入的通道数
  • out_channel:残差块输出的通道数
  • stride:卷积核移动的步长
  • downsample:下采样方法,默认为空(例如:网络架构中conv2.x的输出为[56,56,64],但是conv3.x中需要的输入为[28,28,128],所以需要下采样,对应下图虚线处的残差结构)
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3, stride=stride,
                               padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
  1. 编写forward函数,定义模型的前向传输过程
  • identity用来表示残差结构的支线
  • out表示残差结构的主线
def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out

3.2 定义ResNet[50,101,152]的基础残差块Bottleneck

pytorch搭建gan pytorch搭建resnet_pytorch_03

  1. 50,101,152的残差块中的第三层卷积和个数时是第一层和第二层的4倍,因此定义expansion为4
class Bottleneck(nn.Module):
    expansion = 4
  1. 在init函数中初始化残差块需要用到的结构
def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=stride,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)

        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=1,
                               stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
        self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample
  1. 编写forward函数,定义模型的前向传输过程
def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out

3.3 定义ResNet整体网络结构

  1. 定义_make_layer函数:用来构建网络架构中的(conv2.x,conv3.x,conv4.x,conv5.x)
  • block:基础残差结构(根据定义的网络层数不同,传入不同的残差结构,[18,34]传BasicBlock,[50,101,152]传Bottleneck)
  • channel:残差结构中第一个卷积层使用的卷积核的个数
  • block_num:该层包含多少个残差结构
  • stride:卷积和移动的步距
  • 什么时候分支需要进行下采样:
  • 对于所有的resnet结构,在conv2.x—>conv3.x—>conv4.x—>conv5.x的途中分支都需要进行下采样(stride=2)
  • 对于resnet[50,101,152]网络结构来说,从maxpool层进入conv2.x时分支也需要进行一次“下采样”,这次“下采样”只改变深度,不改变高度和宽度(stride=1)。
def __make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:  # 判断是否进行下采样
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion)
            )
        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))  # 添加第一个残差基础块
        self.in_channel = channel * block.expansion
        # 对于18,34层的网络,经过第一个残差块后,输出的特征矩阵通道数与第一层的卷积层个数一样
        # 对于50,101,152层的网络,经过第一个残差块后,输出的特征矩阵通道数时第一个卷积层的4倍,因此要将后续残差块的输入特征矩阵通道数调整过来
        for _ in range(1, block_num):  # 添加后续的基础残差模块,后续的基础模块都不需要进行下采样操作
            layers.append(block(self.in_channel, channel))

        return nn.Sequential(*layers)
  1. 在init函数中初始化网络需要用到的结构
  • block:基础残差结构
  • block_num:列表参数,标注所使用残差结构的数目,对应网络架构图中的数目
  • num_classes:训练集分类个数
  • include_top:resnet网络上接其他网络,构成更复杂的网络
def __init__(self, block, block_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64  # maxpooling之后得到的特征矩阵的深度

        self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self.__make_layer(block, 64, block_num[0])
        self.layer2 = self.__make_layer(block, 128, block_num[1], stride=2)
        self.layer3 = self.__make_layer(block, 256, block_num[2], stride=2)
        self.layer4 = self.__make_layer(block, 512, block_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d(1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():  # 初始化模型参数
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
  1. 编写forward函数,定义模型的前向传输过程
def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x
  1. 定义resnet不同层数的网络
def resnet18(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, include_top=include_top)


def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet50(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


def resnet34(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 8, 26, 3], num_classes=num_classes, include_top=include_top)

4、训练

4.1 下载官方提供的ResNet网络的与训练模型参数

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

4.2 数据集准备

  1. 获取花分类数据集,放在data_set/flower_data文件夹下
  2. 使用split.py划分训练集和测试集
import os
from shutil import copy, rmtree
import random


def mk_file(file_path: str):
    if os.path.exists(file_path):
        # 如果文件夹存在,则先删除原文件夹在重新创建
        rmtree(file_path)
    os.makedirs(file_path)


def main():
    # 保证随机可复现
    random.seed(0)

    # 将数据集中10%的数据划分到验证集中
    split_rate = 0.1

    # 指向你解压后的flower_photos文件夹
    cwd = os.getcwd()
    data_root = os.path.join(cwd, "flower_data")
    origin_flower_path = os.path.join(data_root, "flower_photos")
    assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)

    flower_class = [cla for cla in os.listdir(origin_flower_path)
                    if os.path.isdir(os.path.join(origin_flower_path, cla))]

    # 建立保存训练集的文件夹
    train_root = os.path.join(data_root, "train")
    mk_file(train_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(train_root, cla))

    # 建立保存验证集的文件夹
    val_root = os.path.join(data_root, "val")
    mk_file(val_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(val_root, cla))

    for cla in flower_class:
        cla_path = os.path.join(origin_flower_path, cla)
        images = os.listdir(cla_path)
        num = len(images)
        # 随机采样验证集的索引
        eval_index = random.sample(images, k=int(num*split_rate))
        for index, image in enumerate(images):
            if image in eval_index:
                # 将分配至验证集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(val_root, cla)
                copy(image_path, new_path)
            else:
                # 将分配至训练集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(train_root, cla)
                copy(image_path, new_path)
            print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing bar
        print()

    print("processing done!")


if __name__ == '__main__':
    main()

pytorch搭建gan pytorch搭建resnet_python_04

4.3 构建train.py文件

  1. 定义数据标准化处理方式(这里的normalize的参数为官方提供的参数)
data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),# 最小边缩放
                                   transforms.CenterCrop(224),# 中心裁剪
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
  1. 载入数据集
data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)
    
    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
        
    batch_size = 16

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=0)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=0)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
  1. 初始化网络模型并载入预训练参数(由于使用cpu进行训练,为了节省时间使用了迁移学习的方法)
net = resnet34()
    model_weight_path = "./pth/resnet34-pre.pth"
    assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    # for param in net.parameters():
    #     param.requires_grad = False
  1. 修改最后全连接层的输出类别数量(这里只预测5类)
# change fc layer structure
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)
    net.to(device)
  1. 定义损失函数和优化器
# define loss function
    loss_function = nn.CrossEntropyLoss()

    # construct an optimizer
    params = [p for p in net.parameters() if p.requires_grad]
    optimizer = optim.Adam(params, lr=0.0001)
  1. 定义一些初始化参数(epoch,模型参数保存路径等)
epochs = 3
    best_acc = 0.0
    save_path = './resNet34.pth'
    train_steps = len(train_loader)
  1. 开始训练,打印训练结果
for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')

pytorch搭建gan pytorch搭建resnet_pytorch_05

5、预测

注意:预测时,对于数据的标准化处理方式要采用和训练时的一致的处理方式

python
import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import resnet34


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img_path = "./tulipa.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = resnet34(num_classes=5).to(device)

    # load model weights
    weights_path = "./resNet34.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))

    # prediction
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

pytorch搭建gan pytorch搭建resnet_ide_06