前提
最近发现各个频道推荐了很多ULID
相关文章,这里对ULID
的规范文件进行解读,并且基于Java
语言自行实现ULID
,通过此实现过程展示ULID
的底层原理。
笔者尝试把ULID基于Java实现的代码工程化,见仓库ulid4j,欢迎star或者提交PR
ULID出现的背景
ULID logo
ULID
全称是Universally Unique Lexicographically Sortable Identifier
,直译过来就是「通用唯一按字典排序的标识符」,它的原始仓库是https://github.com/ulid/javascript
,该项目由前端开发者alizain发起,基于JavaScript
语言编写。从项目中的commit
历史来看已经超过了5
年,「理论上得到充分的实践验证」。ULID
出现的原因是一些开发者认为主流的UUID
方案在许多场景下可能不是最优的,存在下面的原因:
UUID
不是128 bit
随机编码(由128 bit
随机数通过编码生成字符串)的最高效实现方式UUID
的v1/v2
实现在许多环境中是不切实际的,因为这两个版本的的实现需要访问唯一的、稳定的MAC
地址UUID
的v3/v5
实现需要唯一的种子,并且产生随机分布的ID
,这可能会导致在许多数据结构中出现碎片UUID
的v4
除了随机性之外不需要提供其他信息,随机性可能会在许多数据结构中导致碎片
这里概括一下就是:UUID
的v1/v2
实现依赖唯一稳定MAC
地址不现实,v3/v4/v5
实现因为随机性产生的ID
会"碎片化"。
基于此提出了ULID
,它用起来像这样:
ulid() // 01ARZ3NDEKTSV4RRFFQ69G5FAV
ULID
的特点如下:
- 设计为
128 bit
大小,与UUID
兼容 - 每毫秒生成
1.21e+24
个唯一的ULID
(高性能) - 按字典顺序(字母顺序)排序
- 标准编码为
26
个字符的字符串,而不是像UUID
那样需要36
个字符 - 使用
Crockford
的base32
算法来提高效率和可读性(每个字符5 bit
) - 不区分大小写
- 没有特殊字符串(
URL
安全,不需要进行二次URL
编码) - 单调排序(正确地检测并处理相同的毫秒,所谓「单调性」,就是毫秒数相同的情况下,能够确保新的
ULID
随机部分的在最低有效位上加1
位)
ULID规范
下面的ULID
规范在ULID/javascript
类库中实现,此二进制格式目前没有在JavaScript
中实现:
01AN4Z07BY 79KA1307SR9X4MV3
|----------| |----------------|
Timestamp Randomness
48bits 80bits
组成
「时间戳(Timestamp
)」
- 占据
48 bit
(high
) - 本质是
UNIX-time
,单位为毫秒 - 直到公元
10889
年才会用完
「随机数(Randomness
)」
- 占据
80 bit
(low
) - 如果可能的话,使用加密安全的随机源
排序
"最左边"的字符必须排在最前面,"最右边"的字符排在最后(词法顺序,或者俗称的字典排序),并且所有字符必须使用默认的ASCII
字符集。在相同的毫秒(时间戳)内,无法保证排序顺序。
规范的表示形式
ULID
规范的字符串表示形式如下:
ttttttttttrrrrrrrrrrrrrrrr
where
t is Timestamp (10 characters)
r is Randomness (16 characters)
也就是:
- 时间戳占据高(左边)
10
个(编码后的)字符 - 随机数占据低(右边)
16
个(编码后的)字符
ULID
规范的字符串表示形式的长度是确定的,「共占据26
个字符」。
编码
使用Crockford Base32
编码算法,这个编码算法的字母表如下:
0123456789ABCDEFGHJKMNPQRSTVWXYZ
该字母表排除了I
、 L
、O
、U
字母,目的是避免混淆和滥用。此算法实现不难,它的官网有详细的算法说明(见https://www.crockford.com/base32.html
):
Crockford Base32
单调性
(如果启用了单调性这个特性为前提下)当在相同的毫秒内生成多个ULID
时,可以保证排序的顺序。也就是说,如果检测到相同的毫秒,则随机分量在最低有效位上加1
位(带进位)。例如:
monotonicUlid() // 01BX5ZZKBKACTAV9WEVGEMMVRZ
monotonicUlid() // 01BX5ZZKBKACTAV9WEVGEMMVS0
溢出错误处理
从技术实现上来看,26
个字符的Base32
编码字符串可以包含130 bit
信息,而ULID
只包含128 bit
信息,所以该编码算法是能完全满足ULID
的需要。基于Base32
编码能够生成的最大的合法ULID
其实就是7ZZZZZZZZZZZZZZZZZZZZZZZZZ
,并且使用的时间戳为epoch time
的281474976710655
或者说2 ^ 48 - 1
。对于任何对大于此值的ULID
进行解码或编码的尝试都应该被所有实现拒绝,以防止溢出错误。
二进制布局
二进制布局的多个部分被编码为16 byte
,每个部分都以最高字节优先(网络字节序,也就是big-endian
)进行编码,布局如下:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32_bit_uint_time_high |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 16_bit_uint_time_low | 16_bit_uint_random |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32_bit_uint_random |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32_bit_uint_random |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
ULID使用
对于script
标签引用:
<script src="https://unpkg.com/ulid@latest/dist/index.umd.js"></script>
<script>
ULID.ulid()
</script>
NPM
安装:
npm install --save ulid
TypeScript
, ES6+
, Babel
, Webpack
, Rollup
等等下使用:
// import
import { ulid } from 'ulid'
ulid()
// CommonJS env
const ULID = require('ulid')
ULID.ulid()
后端Maven
项目中使用需要引入依赖,这里选用ulid-creator
实现:
<dependency>
<groupId>com.github.f4b6a3</groupId>
<artifactId>ulid-creator</artifactId>
<version>5.0.2</version>
</dependency>
然后调用UlidCreator#getUlid()
系列方法:
// 常规
Ulid ulid = UlidCreator.getUlid();
// 单调排序
Ulid ulid = UlidCreator.getMonotonicUlid();
实现ULID
前面已经提到ULID
的规范,其实具体实现ULID
就是对着规范里面的每一个小节进行编码实现。先看二进制布局,由于使用128 bit
去存储,可以借鉴UUID
那样,使用两个long
类似的成员变量存储ULID
的信息,看起来像这样:
public final class ULID {
/*
* The most significant 64 bits of this ULID.
*
*/
private final long msb;
/*
* The least significant 64 bits of this ULID.
*
*/
private final long lsb;
public ULID(long msb, long lsb) {
this.msb = msb;
this.lsb = lsb;
}
}
按照ULID
的组成来看,可以提供一个入参为时间戳和随机数字节数组的构造:
public ULID(long timestamp, byte[] randomness) {
if ((timestamp & TIMESTAMP_MASK) != 0) {
throw new IllegalArgumentException("Invalid timestamp");
}
if (Objects.isNull(randomness) || RANDOMNESS_BYTE_LEN != randomness.length) {
throw new IllegalArgumentException("Invalid randomness");
}
long msb = 0;
long lsb = 0;
// 时间戳左移16位,低位补零准备填入部分随机数位,即16_bit_uint_random
msb |= timestamp << 16;
// randomness[0]左移0位填充到16_bit_uint_random的高8位,randomness[1]填充到16_bit_uint_random的低8位
msb |= (long) (randomness[0x0] & 0xff) << 8;
// randomness[1]填充到16_bit_uint_random的低8位
msb |= randomness[0x1] & 0xff;
// randomness[2] ~ randomness[9]填充到剩余的bit_uint_random中,要左移相应的位
lsb |= (long) (randomness[0x2] & 0xff) << 56;
lsb |= (long) (randomness[0x3] & 0xff) << 48;
lsb |= (long) (randomness[0x4] & 0xff) << 40;
lsb |= (long) (randomness[0x5] & 0xff) << 32;
lsb |= (long) (randomness[0x6] & 0xff) << 24;
lsb |= (long) (randomness[0x7] & 0xff) << 16;
lsb |= (long) (randomness[0x8] & 0xff) << 8;
lsb |= (randomness[0x9] & 0xff);
this.msb = msb;
this.lsb = lsb;
}
这是完全按照规范的二进制布局编写代码,可以像UUID
的构造那样精简一下:
long msb = 0;
long lsb = 0;
byte[] data = new byte[16];
byte[] ts = ByteBuffer.allocate(8).putLong(0, timestamp << 16).array();
System.arraycopy(ts, 0, data, 0, 6);
System.arraycopy(randomness, 0, data, 6, 10);
for (int i = 0; i < 8; i++)
msb = (msb << 8) | (data[i] & 0xff);
for (int i = 8; i < 16; i++)
lsb = (lsb << 8) | (data[i] & 0xff);
接着可以简单添加下面几个方法:
public long getMostSignificantBits() {
return this.msb;
}
public long getLeastSignificantBits() {
return this.lsb;
}
// 静态工厂方法,由UUID实例生成ULID实例
public static ULID fromUUID(UUID uuid) {
return new ULID(uuid.getMostSignificantBits(), uuid.getLeastSignificantBits());
}
// 实例方法,当前ULID实例转换为UUID实例
public UUID toUUID() {
return new UUID(this.msb, this.lsb);
}
接着需要覆盖toString()
方法,这是ULID
的核心方法,需要通过Crockford Base32
编码生成规范的字符串表示形式。由于128 bit
要映射为26 char
,这里可以考虑分三段进行映射,也就是48 bit
时间戳映射为10 char
,剩下的两部分随机数分别做40 bit
到8 char
的映射,加起来就是26 char
:
|----------| |----------------|
Timestamp Randomness[split to 2 part]
48bit => 10char 80bit => 16char
编写方法:
/**
* Default alphabet of ULID
*/
private static final char[] DEFAULT_ALPHABET = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C',
'D', 'E', 'F', 'G', 'H', 'J', 'K', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z'};
/**
* Default alphabet mask
*/
private static final int DEFAULT_ALPHABET_MASK = 0b11111;
/**
* Character num of ULID
*/
private static final int ULID_CHAR_LEN = 0x1a;
@Override
public String toString() {
return toCanonicalString(DEFAULT_ALPHABET);
}
public String toCanonicalString(char[] alphabet) {
char[] chars = new char[ULID_CHAR_LEN];
long timestamp = this.msb >> 16;
// 第一部分随机数取msb的低16位+lsb的高24位,这里(msb & 0xffff) << 24作为第一部分随机数的高16位,所以要左移24位
long randMost = ((this.msb & 0xffffL) << 24) | (this.lsb >>> 40);
// 第二部分随机数取lsb的低40位,0xffffffffffL是2^40-1
long randLeast = (this.lsb & 0xffffffffffL);
// 接着每个部分的偏移量和DEFAULT_ALPHABET_MASK(31)做一次或运算就行,就是char[index] = alphabet[(part >> (step * index)) & 31]
chars[0x00] = alphabet[(int) (timestamp >>> 45 & DEFAULT_ALPHABET_MASK)];
chars[0x01] = alphabet[(int) (timestamp >>> 40 & DEFAULT_ALPHABET_MASK)];
chars[0x02] = alphabet[(int) (timestamp >>> 35 & DEFAULT_ALPHABET_MASK)];
chars[0x03] = alphabet[(int) (timestamp >>> 30 & DEFAULT_ALPHABET_MASK)];
chars[0x04] = alphabet[(int) (timestamp >>> 25 & DEFAULT_ALPHABET_MASK)];
chars[0x05] = alphabet[(int) (timestamp >>> 20 & DEFAULT_ALPHABET_MASK)];
chars[0x06] = alphabet[(int) (timestamp >>> 15 & DEFAULT_ALPHABET_MASK)];
chars[0x07] = alphabet[(int) (timestamp >>> 10 & DEFAULT_ALPHABET_MASK)];
chars[0x08] = alphabet[(int) (timestamp >>> 5 & DEFAULT_ALPHABET_MASK)];
chars[0x09] = alphabet[(int) (timestamp & DEFAULT_ALPHABET_MASK)];
chars[0x0a] = alphabet[(int) (randMost >>> 35 & DEFAULT_ALPHABET_MASK)];
chars[0x0b] = alphabet[(int) (randMost >>> 30 & DEFAULT_ALPHABET_MASK)];
chars[0x0c] = alphabet[(int) (randMost >>> 25 & DEFAULT_ALPHABET_MASK)];
chars[0x0d] = alphabet[(int) (randMost >>> 20 & DEFAULT_ALPHABET_MASK)];
chars[0x0e] = alphabet[(int) (randMost >>> 15 & DEFAULT_ALPHABET_MASK)];
chars[0x0f] = alphabet[(int) (randMost >>> 10 & DEFAULT_ALPHABET_MASK)];
chars[0x10] = alphabet[(int) (randMost >>> 5 & DEFAULT_ALPHABET_MASK)];
chars[0x11] = alphabet[(int) (randMost & DEFAULT_ALPHABET_MASK)];
chars[0x12] = alphabet[(int) (randLeast >>> 35 & DEFAULT_ALPHABET_MASK)];
chars[0x13] = alphabet[(int) (randLeast >>> 30 & DEFAULT_ALPHABET_MASK)];
chars[0x14] = alphabet[(int) (randLeast >>> 25 & DEFAULT_ALPHABET_MASK)];
chars[0x15] = alphabet[(int) (randLeast >>> 20 & DEFAULT_ALPHABET_MASK)];
chars[0x16] = alphabet[(int) (randLeast >>> 15 & DEFAULT_ALPHABET_MASK)];
chars[0x17] = alphabet[(int) (randLeast >>> 10 & DEFAULT_ALPHABET_MASK)];
chars[0x18] = alphabet[(int) (randLeast >>> 5 & DEFAULT_ALPHABET_MASK)];
chars[0x19] = alphabet[(int) (randLeast & DEFAULT_ALPHABET_MASK)];
return new String(chars);
}
上面的方法toCanonicalString()
看起来很"臃肿",但是能保证性能比较高。接着添加常用的工厂方法:
public static ULID ulid() {
return ulid(System::currentTimeMillis, len -> {
byte[] bytes = new byte[len];
ThreadLocalRandom.current().nextBytes(bytes);
return bytes;
});
}
public static ULID ulid(Supplier<Long> timestampProvider,
IntFunction<byte[]> randomnessProvider) {
return new ULID(timestampProvider.get(), randomnessProvider.apply(RANDOMNESS_BYTE_LEN));
}
默认使用ThreadLocalRandom
生成随机数,如果是JDK17
以上,还可以选用更高性能的新型PRNG
实现,对应接口是RandomGenerator
,默认实现是L32X64MixRandom
。编写一个main
方法运行一下:
public static void main(String[] args) {
System.out.println(ULID.ulid());
}
// 某次执行结果
01GFGGMBFGB5WKXBN7S84ATRDG
最后实现"单调递增"的ULID
构造,先提供一个"增长"方法:
/**
* The least significant 64 bits increase overflow, 0xffffffffffffffffL + 1
*/
private static final long OVERFLOW = 0x0000000000000000L;
public ULID increment() {
long msb = this.msb;
long lsb = this.lsb + 1;
if (lsb == OVERFLOW) {
msb += 1;
}
return new ULID(msb, lsb);
}
其实就是低位加1
,溢出后高位加1
。接着添加一个静态内部子类和响应方法如下:
// 构造函数
public ULID(ULID other) {
this.msb = other.msb;
this.lsb = other.lsb;
}
public static byte[] defaultRandomBytes(int len) {
byte[] bytes = new byte[len];
ThreadLocalRandom.current().nextBytes(bytes);
return bytes;
}
public static MonotonicULIDSpi monotonicUlid() {
return monotonicUlid(System::currentTimeMillis, ULID::defaultRandomBytes);
}
public static MonotonicULIDSpi monotonicUlid(Supplier<Long> timestampProvider,
IntFunction<byte[]> randomnessProvider) {
return new MonotonicULID(timestampProvider, randomnessProvider, timestampProvider.get(),
randomnessProvider.apply(RANDOMNESS_BYTE_LEN));
}
// @SPI MonotonicULID
public interface MonotonicULIDSpi {
ULID next();
}
private static class MonotonicULID extends ULID implements MonotonicULIDSpi {
@Serial
private static final long serialVersionUID = -9158161806889605101L;
private volatile ULID lastULID;
private final Supplier<Long> timestampProvider;
private final IntFunction<byte[]> randomnessProvider;
public MonotonicULID(Supplier<Long> timestampProvider,
IntFunction<byte[]> randomnessProvider,
long timestamp,
byte[] randomness) {
super(timestamp, randomness);
this.timestampProvider = timestampProvider;
this.randomnessProvider = randomnessProvider;
this.lastULID = new ULID(timestamp, randomness);
}
// 这里没设计好,子类缓存了上一个节点,需要重写一下increment方法,父类可以移除此方法
@Override
public ULID increment() {
long newMsb = lastULID.msb;
long newLsb = lastULID.lsb + 1;
if (newLsb == OVERFLOW) {
newMsb += 1;
}
return new ULID(newMsb, newLsb);
}
@Override
public synchronized ULID next() {
long lastTimestamp = lastULID.getTimestamp();
long timestamp = getTimestamp();
// 这里做了一个恒为true的判断,后面再研读其他代码进行修改
if (lastTimestamp >= timestamp || timestamp - lastTimestamp <= 1000) {
this.lastULID = this.increment();
} else {
this.lastULID = new ULID(timestampProvider.get(), randomnessProvider.apply(RANDOMNESS_BYTE_LEN));
}
return new ULID(this.lastULID);
}
}
关于上一个ULID
和下一个ULID
之间的时间戳判断,这里从规范文件没看出细节实现,先简单做一个永远为true
的分支判断,后面再深入研究然后修改。使用方式如下:
public static void main(String[] args) {
MonotonicULIDSpi spi = ULID.monotonicUlid();
System.out.println(spi.next());
System.out.println(spi.next());
System.out.println(spi.next());
System.out.println(spi.next());
}
// 某次运行输出
01GFGASXXQXD5ZJ26PKSCFGNPF
01GFGASXXQXD5ZJ26PKSCFGNPG
01GFGASXXQXD5ZJ26PKSCFGNPH
01GFGASXXQXD5ZJ26PKSCFGNPJ
这里为了更加灵活,没有采用全局静态属性缓存上一个ULID
实例,而是简单使用继承方式实现。
ULID性能评估
引入JMH
做了一个简单的性能测试,代码如下:
@Fork(1)
@Threads(10)
@State(Scope.Benchmark)
@BenchmarkMode(Mode.Throughput)
@Warmup(iterations = 1, time = 1)
@Measurement(iterations = 5, time = 3)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class BenchmarkRunner {
private static ULID.MonotonicULIDSpi SPI;
@Setup
public void setup() {
SPI = ULID.monotonicUlid();
}
@Benchmark
public UUID createUUID() {
return UUID.randomUUID();
}
@Benchmark
public String createUUIDToString() {
return UUID.randomUUID().toString();
}
@Benchmark
public ULID createULID() {
return ULID.ulid();
}
@Benchmark
public String createULIDToString() {
return ULID.ulid().toString();
}
@Benchmark
public ULID createMonotonicULID() {
return SPI.next();
}
@Benchmark
public String createMonotonicULIDToString() {
return SPI.next().toString();
}
public static void main(String[] args) throws Exception {
new Runner(new OptionsBuilder().build()).run();
}
}
某次测试报告如下(开发环境Intel 6700K 4C8T 32G
,使用OpenJDK-19
):
Benchmark Mode Cnt Score Error Units
BenchmarkRunner.createMonotonicULID thrpt 5 20335.118 ± 1656.772 ops/ms
BenchmarkRunner.createMonotonicULIDToString thrpt 5 13091.975 ± 1207.403 ops/ms
BenchmarkRunner.createULID thrpt 5 152574.703 ± 23740.021 ops/ms
BenchmarkRunner.createULIDToString thrpt 5 51559.800 ± 3608.085 ops/ms
BenchmarkRunner.createUUID thrpt 5 819.890 ± 15.508 ops/ms
BenchmarkRunner.createUUIDToString thrpt 5 786.072 ± 44.770 ops/ms
小结
本文就ULID
的规范进行解读,通过规范和参考现有类库进行ULID
的Java
实现。ULID
适用于一些"排序ID"生成或者需要"单调ID"生成的场景,可以考虑用于数据库键设计、顺序号设计等等场景。从实现上看它性能会优于UUID
(特别是单调ULID
,因为不需要重新获取随机数部分,吞吐量会提升一个数量级)。