先看一下语言模型的输出格式

\data\  
ngram 1=64000  
ngram 2=522530  
ngram 3=173445  
  
\1-grams:  
-5.24036        'cause  -0.2084827  
-4.675221       'em     -0.221857  
-4.989297       'n      -0.05809768  
-5.365303       'til    -0.1855581  
-2.111539       </s>    0.0  
-99     <s>     -0.7736475  
-1.128404       <unk>   -0.8049794  
-2.271447       a       -0.6163939  
-5.174762       a's     -0.03869072  
-3.384722       a.      -0.1877073  
-5.789208       a.'s    0.0  
-6.000091       aachen  0.0  
-4.707208       aaron   -0.2046838  
-5.580914       aaron's -0.06230035  
-5.789208       aarons  -0.07077657  
-5.881973       aaronson        -0.2173971  
(注:上面的值都是以10为底的对数值)

 ARPA是常用的语言模型存储格式, 由主要由两部分构成。模型文件头和模型文件体构成。

spacy语言模型安装 srilm 语言模型_3g

 

上面是一个语言模型的一部分,三元语言模型的综合格式如下:

\data
ngram 1=nr # 一元语言模型
ngram 2=nr # 二元语言模型
ngram 3=nr # 三元语言模型
 
\1-grams:
pro_1 word1 back_pro1
 
\2-grams:
pro_2 word1 word2 back_pro2
 
\3-grams:
pro_3 word1 word2 word3
 
\end\

 

第一项表示ngram的条件概率,就是P(wordN | word1,word2,。。。,wordN-1)。 

第二项表示ngram的词。

最后一项是回退的权重。

 

举例来说,对于三个连续的词来说,我们计算三个词一起出现的概率:

P(word3|word1,word2)  

表示word1和word2出现的情况下word3出现的概率,比如P(锤|王,大)的意思是已经出现了“王大”两个字,后面是"锤"的概率,这个概率这么计算:

if(存在(word1,word2,word3)的三元模型){

    return pro_3(word1,word2,word3) ;

}else if(存在(word1,word2)二元模型){

    return back_pro2(word1,word2)*P(word3|word2) ;  #实际使用的时候是对数,就直接相加

}else{
    
    return P(word3 | word2);

}

 

上面的计算又集中在计算P(word3 | word2)的概率上,就是如果不存在王大锤的三元模型,此时不管何种路径,都要计算P(word3 | word2) 的概率,计算如下:

if(存在(word2,word3)的二元模型){

    return pro_2(word2,word3);

}else{
    
    return back_pro2(word2)*pro_1(word3) ; 

}

这个计算的,我们拿个具体的例子来演示一下 :

假设这是我们测的一句3-gram PPL

放 一首 音乐 好 吗
    p( 放 | <s> )   = [2gram] 0.00584747 [ -2.23303 ]
    p( 一首 | 放 ...)   = [3gram] 0.00935384 [ -2.02901 ]
    p( 音乐 | 一首 ...)     = [3gram] 0.610533 [ -0.214291 ]
    p( 好 | 音乐 ...)   = [2gram] 2.31318e-06 [ -5.63579 ]
    p( 吗 | 好 ...)     = [3gram] 0.999717 [ -0.000122777 ]
    p( </s> | 吗 ...)   = [3gram] 0.999976 [ -1.04858e-05 ]
1 sentences, 5 words, 0 OOVs
0 zeroprobs, logprob= -10.1123 ppl= 48.4592 ppl1= 105.306

这是我截取的语言模型里的概率,对照上面的解释,我们知道左边是概率,右边是回退概率,都以log10P 来计

-2.233032   <s> 放  -2.999944
-2.02901    <s> 放 一首
-0.7478155  一首 音乐   -3.733402
-1.902389   音乐 好 -3.254402
-0.2142911  放 一首 音乐

对着看:

1.p( 放 | <s> )=p(<s> 放)=  -2.233032   OK

2.p( 一首 | 放 ...)=p( 一首 | <s>, 放) = p(<s> 放 一首)=-2.02901   OK

3.p( 音乐 | 一首 ...)=p( 音乐 | 放 , 一首 )=p(放 一首 音乐) = -0.2142911  OK

最难的看下 p( 好 | 音乐 ...),因为这里显示的是2-gram ,而实际上我们是测的3-gram,就要用到上面的公式了:

4.p( 好 | 音乐 ...)=p( 好 | 一首,音乐 )=p(一首 音乐 好)   #注意,因为没有p(一首 音乐 好) 的三元组,所以要回退了

=p(音乐 好) x back_p(一首 音乐)= -1.902389 + -3.733402 = -5.635791   OK

 下面的就不一一演示了,这样就知道PPL的每一步是怎么算出来的,也别以为PPL上面显示的2-gram,就只跟前一个有关系,其实你算的是3-gram,就都跟前两个词有关系,只不过有些算的是回退的概率。

那么回退的这个概率公式是什么?

如果语料里的词不在wordlist里面呢?语言模型会有什么变化?

做个实验:

语料   welcome.corpus.pat

欢迎你
欢迎加入大家庭
欢迎加入小组

生成词表   small.wlist

#!/bin/bash
 ./tools/wrdmrgseg_ggl-v3.sh ./118k-kuwomusic.new.vocab.dict2 welcome.corpus.pat corpus.pat.wseg  #分词
 rm small.wlist
 echo '</s>' >> small.wlist
 echo '<s>' >> small.wlist
 LANG=C;LC_ALL=C;awk '{for(i=1;i<=NF;i++){print$i}}' corpus.pat.wseg | sort -u >>  small.wlist

词表内容:(龟速是随便加的一个词,无视他)

</s>
<s>

加入
大家庭
小组
欢迎
龟速

生成语言模型 welcome.lm1

ngram-count -order 3 -debug 1 -text corpus.pat.wseg  -vocab small.wlist -gt3min 1  -lm lm/welcome.lm1

然后我们换一个语料,词表不变:

欢迎你
欢迎加入大家庭
欢迎加入小组
加入大胡欢迎

再生成语言模型,welcome.lm2

比较一下:

spacy语言模型安装 srilm 语言模型_3g_02

很明显可以看出,右边多了两个,红色矩形标出,这就是我们多加了的那句语料造成的,而大胡在词表中未出现,所以在这里隔开了,注意,不是换行,对  <s> 加入 只有sentence start ,而没有 sentence end

语言模型困惑度

ngram -ppl devtest2006.en -order 3 -lm europarl.en.lm > europarl.en.lm.ppl

  其中测试集采用 wmt08 用于机器翻译的测试集 devtest2006.en,2000 句;

参数 - ppl 为对测试集句子进行评分 (logP(T),其中 P(T) 为所有句子的概率乘积)和计算测试集困惑度的参数;

europarl.en.lm.ppl 为输出结果文件;其他参数同上。输出文件结果如下:

 file devtest2006.en: 2000 sentences, 52388 words, 249 OOVs
 0 zeroprobs, logprob= -105980 ppl= 90.6875 ppl1= 107.805

  第一行文件 devtest2006.en 的基本信息:2000 句,52888 个单词,249 个未登录词;
  第二行为评分的基本情况:无 0 概率;logP(T)=-105980,ppl==90.6875, ppl1= 107.805,均为困惑度。其公式稍有不同,如下:

ppl=10^{-{logP(T)}/{Sen+Word}}; ppl1=10^{-{logP(T)}/Word}

  其中 Sen 和 Word 分别代表句子和单词数。 

我们自己实操一下:

我 要 去 上海 明珠路 五百 五 十五 弄
        p( 我 | <s> )   = [2gram] 0.126626 [ -0.897477 ]
        p( 要 | 我 ...)         = [2gram] 0.194285 [ -0.71156 ]
        p( 去 | 要 ...)         = [2gram] 0.205612 [ -0.686952 ]
        p( 上海 | 去 ...)       = [2gram] 0.00419823 [ -2.37693 ]
        p( 明珠路 | 上海 ...)   = [2gram] 6.65196e-06 [ -5.17705 ]
        p( 五百 | 明珠路 ...)   = [2gram] 0.00264877 [ -2.57696 ]
        p( 五 | 五百 ...)       = [2gram] 0.0768465 [ -1.11438 ]
        p( 十五 | 五 ...)       = [2gram] 0.0159186 [ -1.79809 ]
        p( 弄 | 十五 ...)       = [2gram] 0.0543947 [ -1.26444 ]
        p( </s> | 弄 ...)       = [2gram] 0.0667069 [ -1.17583 ]
1 sentences, 9 words, 0 OOVs
0 zeroprobs, logprob= -17.7797 ppl= 59.9746 ppl1= 94.519
>>> pow(10,-1.0/10*(-17.7797))
59.97496455867574
>>> pow(10,-1.0/9*(-17.7797))
94.51967555580339

可以看下这边的详细公式:

logprob是每个n-元组概率的对数和,在上面的示例中,确实是最后一列之和即为logprob

S 代表 sentence,N 是句子长度,p(wi) 是第 i 个词的概率。N个相乘,再开N次方根,起到了规约的作用。

spacy语言模型安装 srilm 语言模型_语言模型_03

 

模型插值后的权重变化

文本

$ head l1.wseg  l2.wseg
==> l1.wseg <==
导航 去 上海
导航 去 苏州
导航 去 北京

==> l2.wseg <==
听 周杰伦 的 歌曲
听 汪峰 的 歌曲
听 刘德华 的 歌曲

 

\data\                                                 |\data\                                                 |-1.380211   苏州    -0.07638834                        
ngram 1=7                                              |ngram 1=8                                              |                                                       
ngram 2=8                                              |ngram 2=9                                              |\2-grams:                                              
ngram 3=7                                              |ngram 3=10                                             |-0.4259687  <s> 听  0.05551729                         
                                                       |                                                       |-0.4259687  <s> 导航    0                              
\1-grams:                                              |\1-grams:                                              |-0.455932   上海 </s>                                  
-0.60206    </s>                                       |-0.69897    </s>                                       |-0.4259687  刘德华 的   0.07918127                     
-99 <s> -0.4771213                                     |-99 <s> -0.50515                                       |-0.455932   北京 </s>                                  
-1.079181   上海    -0.1760913                         |-1.176091   刘德华  -0.50515                           |-0.90309    去 上海 0                                  
-1.079181   北京    -0.1760913                         |-0.69897    听  -0.9030898                             |-0.90309    去 北京 0                                  
-0.60206    去  -0.4771211                             |-1.176091   周杰伦  -0.50515                           |-0.90309    去 苏州 0                                  
-0.60206    导航    -0.4771213                         |-0.69897    歌曲    -0.50515                           |-0.8239088  听 刘德华   0.07918127                     
-1.079181   苏州    -0.1760913                         |-1.176091   汪峰    -0.50515                           |-0.8239088  听 周杰伦   0.07918127                     
                                                       |-0.69897    的  -0.50515                               |-0.8239088  听 汪峰 0.07918127                         
\2-grams:                                              |                                                       |-0.4259687  周杰伦 的   0.07918127                     
-0.1249387  <s> 导航    0                              |\2-grams:                                              |-0.4259687  导航 去 0                                  
-0.30103    上海 </s>                                  |-0.1249387  <s> 听  0.3979399                          |-0.30103    歌曲 </s>                                  
-0.30103    北京 </s>                                  |-0.1249387  刘德华 的   0.30103                        |-0.4259687  汪峰 的 0.07918127                         
-0.60206    去 上海 0                                  |-0.5228788  听 刘德华   0.30103                        |-0.4259687  的 歌曲 0                                  
-0.60206    去 北京 0                                  |-0.5228788  听 周杰伦   0.30103                        |-0.455932   苏州 </s>                                  
-0.60206    去 苏州 0                                  |-0.5228788  听 汪峰 0.30103                            |                                                       
-0.1249387  导航 去 0                                  |-0.1249387  周杰伦 的   0.30103                        |\3-grams:                                              
-0.30103    苏州 </s>                                  |-0.1249387  歌曲 </s>                                  |-0.455932   去 上海 </s>                               
                                                       |-0.1249387  汪峰 的 0.30103                            |-0.60206    听 刘德华 的                               
\3-grams:                                              |-0.1249387  的 歌曲 0                                  |-0.455932   去 北京 </s>                               
-0.30103    去 上海 </s>                               |                                                       |-0.90309    导航 去 上海                               
-0.30103    去 北京 </s>                               |\3-grams:                                              |-0.90309    导航 去 北京                               
-0.60206    导航 去 上海                               |-0.30103    听 刘德华 的                               |-0.90309    导航 去 苏州                               
-0.60206    导航 去 北京                               |-0.60206    <s> 听 刘德华                              |-0.90309    <s> 听 刘德华                              
-0.60206    导航 去 苏州                               |-0.60206    <s> 听 周杰伦                              |-0.90309    <s> 听 周杰伦                              
-0.1249387  <s> 导航 去                                |-0.60206    <s> 听 汪峰                                |-0.90309    <s> 听 汪峰                                
-0.30103    去 苏州 </s>                               |-0.30103    听 周杰伦 的                               |-0.60206    听 周杰伦 的                               
                                                       |-0.1249387  的 歌曲 </s>                               |-0.4259687  <s> 导航 去                                
\end\                                                  |-0.30103    听 汪峰 的                                 |-0.30103    的 歌曲 </s>                               
~                                                      |-0.30103    刘德华 的 歌曲                             |-0.60206    听 汪峰 的                                 
~                                                      |-0.30103    周杰伦 的 歌曲                             |-0.60206    刘德华 的 歌曲                             
~                                                      |-0.30103    汪峰 的 歌曲                               |-0.60206    周杰伦 的 歌曲                             
~                                                      |                                                       |-0.60206    汪峰 的 歌曲                               
~                                                      |\end\                                                  |-0.455932   去 苏州 </s>                               
~                                                      |~                                                      |                                                       
~                                                      |~                                                      |\end\                                                  
~                                                      |~                                                      |~                                                      
~                                                      |~                                                      |~                                                      
~                                                      |~                                                      |~                                                      
l1.lm                                                   l2.lm                                                   l3.lm

 这个简单的例子可以看到,插值后的模型,元组的概率会变差,符合正常的直观理解。