提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
- 前言
- 一、redis数据类型
- 1. string
- 2. list
- 3. hash
- 4. set
- 5. zset
- zset底层数据结构
- 编码转换
- 压缩列表
- 跳表
- 二、redis持久化
- AOF
- AOF 三种同步方式
- RDB
- 三、redis过期策略和内存淘汰策略
- Redis的过期键的删除策略
- 定时过期
- 惰性过期
- 定期过期
- Redis的内存淘汰策略
- 2.读入数据
- 三、事务
- 事务特性
- 事务三个阶段
- 四、线程模型
- 五、哨兵模式
- 六、集群模式
- 路由方式-哈希槽
- 请求流程
- 集群通信
- 七、主从架构
- 核心机制
- 核心原理
- 八、redis实现分布式锁
- SETNX
- RedLock
- 特性
- 虚拟内存机制
- 九 pipeline模式
- 缓存穿透
- 产生原因
- 如何避免缓存穿透
- 十、缓存三问题
- 缓存雪崩
- 缓存击穿
- 解决方案
- 十一、热Key问题
- 产生原因
- 解决热key问题
前言
一、redis数据类型
1. string
2. list
3. hash
4. set
5. zset
zset底层数据结构
编码转换
当有序集合对象同时满足以下两个条件时,对象使用 ziplist 编码:
1、保存的元素数量小于128;
2、保存的所有元素长度都小于64字节。
压缩列表
压缩列表作为底层实现,每个集合元素使用两个紧挨在一起的压缩列表节点来保存,第一个节点保存元素的成员,第二个节点保存元素的分值。并且压缩列表内的集合元素按分值从小到大的顺序进行排列,小的放置在靠近表头的位置,大的放置在靠近表尾的位置。
跳表
skiplist 编码的有序集合对象使用 zset 结构作为底层实现, 一个zset 结构同时包含一个字典和一个跳跃表
zset 结构中的 zsl 跳跃表按分值从小到大保存了所有集合元素, 每个跳跃表节点都保存了一个集合元素:跳跃表节点的 object 属性保存了元素的成员,而跳跃表节点的 score 属性则保存了元素的分值。
Redis中跳表一个节点最高可以达到64层,一个跳表中最多可以存储2^64个元素。跳表中,每个节点都是一个skiplistNode,
每个跳表的节点也都会维护着一个score值,这个值在跳表中是按照从小到大的顺序排列好的。
跳表的结构定义如下所示。
header:指向跳表的头节点,通过这个指针可以直接找到表头,时间复杂度为O(1);
tail:指向跳表的尾节点,通过这个指针可以直接找到表尾,时间复杂度为o(1);
length:记录跳表的长度,即不包括头节点,整个跳表中有多少个元素;
level:记录当前跳表内,所有节点中层数最大的level;
跳表底层
二、redis持久化
AOF
将写命令添加到 AOF 文件(Append Only File)的末尾。
使用 AOF 持久化需要设置同步选项,从而确保写命令同步到磁盘文件上的时机。这是因为对文件进行写入并不会马上将内容同步到磁盘上,而是先存储到缓冲区,然后由操作系统决定什么时候同步到磁盘。
AOF 三种同步方式
always
选项会严重减低服务器的性能;
everysec
选项比较合适,可以保证系统崩溃时只会丢失一秒左右的数据,并且 Redis 每秒执行一次同步对服务器性能几乎没有任何影响;
no
选项并不能给服务器性能带来多大的提升,而且也会增加系统崩溃时数据丢失的数量。
RDB
三、redis过期策略和内存淘汰策略
Redis的过期键的删除策略
定时过期
每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。
惰性过期
只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。
定期过期
每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。
Redis的内存淘汰策略
全局的键空间选择性移除
noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。
allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。(这个是最常用的)
allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
设置过期时间的键空间选择性移除
volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。
2.读入数据
代码如下(示例):
data = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())
该处使用的url网络请求的数据。
三、事务
事务特性
持久性是指一个事务一旦被提交,它对数据库中数据的改变就是永久性的,接下来即使数据库发生故障也不应该对其有任何影响
Redis的事务总是具有
A原子性
C一致性
I隔离性
D持久性
中的一致性和隔离性,其他特性是不支持的。当服务器运行在AOF持久化模式下,并且appendfsync选项的值为always时,事务也具有耐久性。
Redis 是单进程程序,并且它保证在执行事务时,不会对事务进行中断,事务可以运行直到执行完所有事务队列中的命令为止。因此,Redis 的事务是总是带有隔离性的。Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。基于Lua脚本,Redis可以保证脚本内的命令一次性、按顺序地执行,其同时也不提供事务运行错误的回滚,执行过程中如果部分命令运行错误,剩下的命令还是会继续运行完。
事务三个阶段
事务开始 MULTI
命令入队
事务执行 EXEC
事务执行过程中,如果服务端收到有EXEC、DISCARD、WATCH、MULTI之外的请求,将会把请求放入队列中排队
7. Redis事务保证原子性吗,支持回滚吗?
Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。
Redis事务其他实现
四、线程模型
五、哨兵模式
集群监控:负责监控 redis master 和 slave 进程是否正常工作。
消息通知:如果某个 redis 实例有故障,那么哨兵负责发送消息作为报警通知给管理员。
故障转移:如果 master node 挂掉了,会自动转移到 slave node 上。故障转移时,判断一个 master node 是否宕机了,需要大部分的哨兵都同意才行,涉及到了分布式选举的问题。
配置中心:如果故障转移发生了,通知 client 客户端新的 master 地址。
六、集群模式
路由方式-哈希槽
- Redis Cluster并没有使用一致性hash,而是采用slot(槽)的概念,一共分成16384个槽。将请求发送到任意节点,接收到请求的节点会将查询请求发送到正确的节点上执行。
- 每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。
请求流程
通过哈希的方式,将数据分片,每个节点均分存储一定哈希槽(哈希值)区间的数据,默认分配了16384 个槽位
每份数据分片会存储在多个互为主从的多节点上
数据写入先写主节点,再同步到从节点(支持配置为阻塞同步)
同一分片多个节点间的数据不保持一致性
读取数据时,当客户端操作的key没有分配在该节点上时,redis会返回转向指令,指向正确的节点
集群通信
在 redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。
16379 端口号是用来进行节点间通信的,也就是 cluster bus 的东西,cluster bus 的通信,用来进行故障检测、配置更新、故障转移授权。cluster bus 用了另外一种二进制的协议,gossip 协议,用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间。
七、主从架构
一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。
核心机制
redis 采用异步方式复制数据到 slave 节点,不过 redis2.8 开始,slave node 会周期性地确认自己每次复制的数据量;
一个 master node 是可以配置多个 slave node 的;
slave node 也可以连接其他的 slave node;
slave node 做复制的时候,不会 block master node 的正常工作;
slave node 在做复制的时候,也不会 block 对自己的查询操作,它会用旧的数据集来提供服务;但是复制完成的时候,需要删除旧数据集,加载新数据集,这个时候就会暂停对外服务了;
slave node 主要用来进行横向扩容,做读写分离,扩容的 slave node 可以提高读的吞吐量。
核心原理
- 当启动一个 slave node 的时候,它会发送一个 PSYNC 命令给 master node。
- 如果这是 slave node 初次连接到 master node,那么会触发一次 full resynchronization 全量复制。此时 master 会启动一个后台线程,开始生成一份 RDB 快照文件,
- 同时还会将从客户端 client 新收到的所有写命令缓存在内存中。RDB 文件生成完毕后, master 会将这个 RDB 发送给 slave,slave 会先写入本地磁盘,然后再从本地磁盘加载到内存中,
- 接着 master 会将内存中缓存的写命令发送到 slave,slave 也会同步这些数据。
- slave node 如果跟 master node 有网络故障,断开了连接,会自动重连,连接之后 master node 仅会复制给 slave 部分缺少的数据。
八、redis实现分布式锁
SETNX
Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系Redis中可以使用SETNX命令实现分布式锁。
当且仅当 key 不存在,将 key 的值设为 value。若给定的 key 已经存在,则 SETNX 不做任何动作
SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。
返回值:设置成功,返回 1 。设置失败,返回 0 。
使用SETNX完成同步锁的流程及事项如下:
使用SETNX命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功
为了防止获取锁后程序出现异常,导致其他线程/进程调用SETNX命令总是返回0而进入死锁状态,需要为该key设置一个“合理”的过期时间
释放锁,使用DEL命令将锁数据删除。
RedLock
Redis 官方站提出了一种权威的基于 Redis 实现分布式锁的方式名叫 Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下
特性
安全特性:互斥访问,即永远只有一个 client 能拿到锁
避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区
容错性:只要大部分 Redis 节点存活就可以正常提供服务
虚拟内存机制
Redis直接自己构建了VM机制 ,不会像一般的系统会调用系统函数处理,会浪费一定的时间去移动和请求。
Redis的虚拟内存机制是啥呢?
虚拟内存机制就是暂时把不经常访问的数据(冷数据)从内存交换到磁盘中,从而腾出宝贵的内存空间用于其它需要访问的数据(热数据)。通过VM功能可以实现冷热数据分离,使热数据仍在内存中、冷数据保存到磁盘。这样就可以避免因为内存不足而造成访问速度下降的问题。
九 pipeline模式
redis pipeline原理
缓存穿透
先来看一个常见的缓存使用方式:读请求来了,先查下缓存,缓存有值命中,就直接返回;缓存没命中,就去查数据库,然后把数据库的值更新到缓存,再返回。
缓存穿透:指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,进而给数据库带来压力。
通俗点说,读请求访问时,缓存和数据库都没有某个值,这样就会导致每次对这个值的查询请求都会穿透到数据库,这就是缓存穿透。
产生原因
业务不合理的设计,比如大多数用户都没开守护,但是你的每个请求都去缓存,查询某个userid查询有没有守护。
业务/运维/开发失误的操作,比如缓存和数据库的数据都被误删除了。
黑客非法请求攻击,比如黑客故意捏造大量非法请求,以读取不存在的业务数据。
如何避免缓存穿透
1.如果是非法请求,我们在API入口,对参数进行校验,过滤非法值。
2.如果查询数据库为空,我们可以给缓存设置个空值,或者默认值。但是如有有写请求进来的话,需要更新缓存哈,以保证缓存一致性,同时,最后给缓存设置适当的过期时间。(业务上比较常用,简单有效)
3.使用布隆过滤器快速判断数据是否存在。即一个查询请求过来时,先通过布隆过滤器判断值是否存在,存在才继续往下查。
布隆过滤器原理:它由初始值为0的位图数组和N个哈希函数组成。一个对一个key进行N个hash算法获取N个值,在比特数组中将这N个值散列后设定为1,然后查的时候如果特定的这几个位置都为1,那么布隆过滤器判断该key存在。
十、缓存三问题
缓存雪崩
指缓存中数据大批量到过期时间,而查询数据量巨大,请求都直接访问数据库,引起数据库压力过大甚至down机。
缓存雪崩一般是由于大量数据同时过期造成的,对于这个原因,可通过均匀设置过期时间解决,即让过期时间相对离散一点。如采用一个较大固定值+一个较小的随机值,5小时+0到1800秒酱紫。
Redis 故障宕机也可能引起缓存雪崩。这就需要构造Redis高可用集群啦。
缓存击穿
缓存击穿: 指热点key在某个时间点过期的时候,而恰好在这个时间点对这个Key有大量的并发请求过来,从而大量的请求打到db。
缓存击穿看着有点像,其实它两区别是,缓存雪奔是指数据库压力过大甚至down机,缓存击穿只是大量并发请求到了DB数据库层面。可以认为击穿是缓存雪奔的一个子集吧。有些文章认为它俩区别,是区别在于击穿针对某一热点key缓存,雪奔则是很多key。
解决方案
1.使用互斥锁方案。缓存失效时,不是立即去加载db数据,而是先使用某些带成功返回的原子操作命令,如(Redis的setnx)去操作,成功的时候,再去加载db数据库数据和设置缓存。否则就去重试获取缓存。
2. “永不过期”,是指没有设置过期时间,但是热点数据快要过期时,异步线程去更新和设置过期时间。
十一、热Key问题
产生原因
用户消费的数据远大于生产的数据,如秒杀、热点新闻等读多写少的场景。
请求分片集中,超过单Redi服务器的性能,比如固定名称key,Hash落入同一台服务器,瞬间访问量极大,超过机器瓶颈,产生热点Key问题。
解决热key问题
Redis集群扩容:增加分片副本,均衡读流量;
将热key分散到不同的服务器中;
使用二级缓存,即JVM本地缓存,减少Redis的读请求。