经过前三篇文章的学习,Volley的用法我们已经掌握的差不多了,但是对于Volley的工作原理,恐怕有很多朋友还不是很清楚。因此,本篇文章中我们就来一起阅读一下Volley的源码,将它的工作流程整体地梳理一遍。同时,这也是Volley系列的最后一篇文章了。

其实,Volley的官方文档中本身就附有了一张Volley的工作流程图,如下图所示。


volley android支持安卓12 android volley原理_框架

多数朋友突然看到一张这样的图,应该会和我一样,感觉一头雾水吧?没错,目前我们对Volley背后的工作原理还没有一个概念性的理解,直接就来看这张图自然会有些吃力。不过没关系,下面我们就去分析一下Volley的源码,之后再重新来看这张图就会好理解多了。

Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示:


1. public static RequestQueue newRequestQueue(Context context) {  
2. return newRequestQueue(context, null);  
3. }

这个方法仅仅只有一行代码,只是调用了 newRequestQueue()的方法重载,并给第二个参数传入null。那我们看下带有两个参数的newRequestQueue()方法中的代码,如下所示:

1. public static RequestQueue newRequestQueue(Context context, HttpStack stack) {  
2. new File(context.getCacheDir(), DEFAULT_CACHE_DIR);  
3. "volley/0";  
4. try {  
5.         String packageName = context.getPackageName();  
6. 0);  
7. "/" + info.versionCode;  
8. catch (NameNotFoundException e) {  
9.     }  
10. if (stack == null) {  
11. if (Build.VERSION.SDK_INT >= 9) {  
12. new HurlStack();  
13. else {  
14. new HttpClientStack(AndroidHttpClient.newInstance(userAgent));  
15.         }  
16.     }  
17. new BasicNetwork(stack);  
18. new RequestQueue(new DiskBasedCache(cacheDir), network);  
19.     queue.start();  
20. return queue;  
21. }

可以看到,这里在第10行判断如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上 HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的,这里为什么这样选择呢?可以参考我之前翻译的一篇文章Android访问网络,使用HttpURLConnection还是HttpClient?

创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。

那么RequestQueue的start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧:


1. public void start() {  
2. // Make sure any currently running dispatchers are stopped.  
3. // Create the cache dispatcher and start it.  
4. new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);  
5.     mCacheDispatcher.start();  
6. // Create network dispatchers (and corresponding threads) up to the pool size.  
7. for (int i = 0; i < mDispatchers.length; i++) {  
8. new NetworkDispatcher(mNetworkQueue, mNetwork,  
9.                 mCache, mDelivery);  
10.         mDispatchers[i] = networkDispatcher;  
11.         networkDispatcher.start();  
12.     }  
13. }


这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来, 其中 CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。

得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了,那么不用说,add()方法的内部肯定有着非常复杂的逻辑,我们来一起看一下:


1. public <T> Request<T> add(Request<T> request) {  
2. // Tag the request as belonging to this queue and add it to the set of current requests.  
3. this);  
4. synchronized (mCurrentRequests) {  
5.         mCurrentRequests.add(request);  
6.     }  
7. // Process requests in the order they are added.  
8.     request.setSequence(getSequenceNumber());  
9. "add-to-queue");  
10. // If the request is uncacheable, skip the cache queue and go straight to the network.  
11. if (!request.shouldCache()) {  
12.         mNetworkQueue.add(request);  
13. return request;  
14.     }  
15. // Insert request into stage if there's already a request with the same cache key in flight.  
16. synchronized (mWaitingRequests) {  
17.         String cacheKey = request.getCacheKey();  
18. if (mWaitingRequests.containsKey(cacheKey)) {  
19. // There is already a request in flight. Queue up.  
20.             Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);  
21. if (stagedRequests == null) {  
22. new LinkedList<Request<?>>();  
23.             }  
24.             stagedRequests.add(request);  
25.             mWaitingRequests.put(cacheKey, stagedRequests);  
26. if (VolleyLog.DEBUG) {  
27. "Request for cacheKey=%s is in flight, putting on hold.", cacheKey);  
28.             }  
29. else {  
30. // Insert 'null' queue for this cacheKey, indicating there is now a request in  
31. // flight.  
32. null);  
33.             mCacheQueue.add(request);  
34.         }  
35. return request;  
36.     }  
37. }

可以看到,在第11行的时候会判断当前的请求是否可以缓存,如果不能缓存则在第12行直接将这条请求加入网络请求队列,可以缓存的话则在第33行将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。

OK,那么既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:


1. public class CacheDispatcher extends Thread {  
2.   
3.     ……  
4.   
5. @Override  
6. public void run() {  
7. if (DEBUG) VolleyLog.v("start new dispatcher");  
8.         Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);  
9. // Make a blocking call to initialize the cache.  
10.         mCache.initialize();  
11. while (true) {  
12. try {  
13. // Get a request from the cache triage queue, blocking until  
14. // at least one is available.  
15. final Request<?> request = mCacheQueue.take();  
16. "cache-queue-take");  
17. // If the request has been canceled, don't bother dispatching it.  
18. if (request.isCanceled()) {  
19. "cache-discard-canceled");  
20. continue;  
21.                 }  
22. // Attempt to retrieve this item from cache.  
23.                 Cache.Entry entry = mCache.get(request.getCacheKey());  
24. if (entry == null) {  
25. "cache-miss");  
26. // Cache miss; send off to the network dispatcher.  
27.                     mNetworkQueue.put(request);  
28. continue;  
29.                 }  
30. // If it is completely expired, just send it to the network.  
31. if (entry.isExpired()) {  
32. "cache-hit-expired");  
33.                     request.setCacheEntry(entry);  
34.                     mNetworkQueue.put(request);  
35. continue;  
36.                 }  
37. // We have a cache hit; parse its data for delivery back to the request.  
38. "cache-hit");  
39.                 Response<?> response = request.parseNetworkResponse(  
40. new NetworkResponse(entry.data, entry.responseHeaders));  
41. "cache-hit-parsed");  
42. if (!entry.refreshNeeded()) {  
43. // Completely unexpired cache hit. Just deliver the response.  
44.                     mDelivery.postResponse(request, response);  
45. else {  
46. // Soft-expired cache hit. We can deliver the cached response,  
47. // but we need to also send the request to the network for  
48. // refreshing.  
49. "cache-hit-refresh-needed");  
50.                     request.setCacheEntry(entry);  
51. // Mark the response as intermediate.  
52. true;  
53. // Post the intermediate response back to the user and have  
54. // the delivery then forward the request along to the network.  
55. new Runnable() {  
56. @Override  
57. public void run() {  
58. try {  
59.                                 mNetworkQueue.put(request);  
60. catch (InterruptedException e) {  
61. // Not much we can do about this.  
62.                             }  
63.                         }  
64.                     });  
65.                 }  
66. catch (InterruptedException e) {  
67. // We may have been interrupted because it was time to quit.  
68. if (mQuit) {  
69. return;  
70.                 }  
71. continue;  
72.             }  
73.         }  
74.     }  
75. }


代码有点长,我们只挑重点看。首先在11行可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着在第23行会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会在第39行调用Request的 parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码我们先跳过,因为它的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示:

1. public class NetworkDispatcher extends Thread {  
2.     ……  
3. @Override  
4. public void run() {  
5.         Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);  
6.         Request<?> request;  
7. while (true) {  
8. try {  
9. // Take a request from the queue.  
10.                 request = mQueue.take();  
11. catch (InterruptedException e) {  
12. // We may have been interrupted because it was time to quit.  
13. if (mQuit) {  
14. return;  
15.                 }  
16. continue;  
17.             }  
18. try {  
19. "network-queue-take");  
20. // If the request was cancelled already, do not perform the  
21. // network request.  
22. if (request.isCanceled()) {  
23. "network-discard-cancelled");  
24. continue;  
25.                 }  
26.                 addTrafficStatsTag(request);  
27. // Perform the network request.  
28.                 NetworkResponse networkResponse = mNetwork.performRequest(request);  
29. "network-http-complete");  
30. // If the server returned 304 AND we delivered a response already,  
31. // we're done -- don't deliver a second identical response.  
32. if (networkResponse.notModified && request.hasHadResponseDelivered()) {  
33. "not-modified");  
34. continue;  
35.                 }  
36. // Parse the response here on the worker thread.  
37.                 Response<?> response = request.parseNetworkResponse(networkResponse);  
38. "network-parse-complete");  
39. // Write to cache if applicable.  
40. // TODO: Only update cache metadata instead of entire record for 304s.  
41. if (request.shouldCache() && response.cacheEntry != null) {  
42.                     mCache.put(request.getCacheKey(), response.cacheEntry);  
43. "network-cache-written");  
44.                 }  
45. // Post the response back.  
46.                 request.markDelivered();  
47.                 mDelivery.postResponse(request, response);  
48. catch (VolleyError volleyError) {  
49.                 parseAndDeliverNetworkError(request, volleyError);  
50. catch (Exception e) {  
51. "Unhandled exception %s", e.toString());  
52. new VolleyError(e));  
53.             }  
54.         }  
55.     }  
56. }


同样地,在第7行我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在第28行的时候会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们来看下它的 performRequest()方法,如下所示:


1. public class BasicNetwork implements Network {  
2.     ……  
3. @Override  
4. public NetworkResponse performRequest(Request<?> request) throws VolleyError {  
5. long requestStart = SystemClock.elapsedRealtime();  
6. while (true) {  
7. null;  
8. byte[] responseContents = null;  
9. new HashMap<String, String>();  
10. try {  
11. // Gather headers.  
12. new HashMap<String, String>();  
13.                 addCacheHeaders(headers, request.getCacheEntry());  
14.                 httpResponse = mHttpStack.performRequest(request, headers);  
15.                 StatusLine statusLine = httpResponse.getStatusLine();  
16. int statusCode = statusLine.getStatusCode();  
17.                 responseHeaders = convertHeaders(httpResponse.getAllHeaders());  
18. // Handle cache validation.  
19. if (statusCode == HttpStatus.SC_NOT_MODIFIED) {  
20. return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED,  
21. null ? null : request.getCacheEntry().data,  
22. true);  
23.                 }  
24. // Some responses such as 204s do not have content.  We must check.  
25. if (httpResponse.getEntity() != null) {  
26.                   responseContents = entityToBytes(httpResponse.getEntity());  
27. else {  
28. // Add 0 byte response as a way of honestly representing a  
29. // no-content request.  
30. new byte[0];  
31.                 }  
32. // if the request is slow, log it.  
33. long requestLifetime = SystemClock.elapsedRealtime() - requestStart;  
34.                 logSlowRequests(requestLifetime, request, responseContents, statusLine);  
35. if (statusCode < 200 || statusCode > 299) {  
36. throw new IOException();  
37.                 }  
38. return new NetworkResponse(statusCode, responseContents, responseHeaders, false);  
39. catch (Exception e) {  
40.                 ……  
41.             }  
42.         }  
43.     }  
44. }

这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是在第14行调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。还记得我们在上一篇文章中学习的自定义Request的方式吗?其中parseNetworkResponse()这个方法就是必须要重写的。

在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:



1. public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {  
2.     request.markDelivered();  
3. "post-response");  
4. new ResponseDeliveryRunnable(request, response, runnable));  
5. }


其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:

1. private class ResponseDeliveryRunnable implements Runnable {  
2. private final Request mRequest;  
3. private final Response mResponse;  
4. private final Runnable mRunnable;  
5.   
6. public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {  
7.         mRequest = request;  
8.         mResponse = response;  
9.         mRunnable = runnable;  
10.     }  
11.   
12. @SuppressWarnings("unchecked")  
13. @Override  
14. public void run() {  
15. // If this request has canceled, finish it and don't deliver.  
16. if (mRequest.isCanceled()) {  
17. "canceled-at-delivery");  
18. return;  
19.         }  
20. // Deliver a normal response or error, depending.  
21. if (mResponse.isSuccess()) {  
22.             mRequest.deliverResponse(mResponse.result);  
23. else {  
24.             mRequest.deliverError(mResponse.error);  
25.         }  
26. // If this is an intermediate response, add a marker, otherwise we're done  
27. // and the request can be finished.  
28. if (mResponse.intermediate) {  
29. "intermediate-response");  
30. else {  
31. "done");  
32.         }  
33. // If we have been provided a post-delivery runnable, run it.  
34. if (mRunnable != null) {  
35.             mRunnable.run();  
36.         }  
37.    }  
38. }


代码虽然不多,但我们并不需要行行阅读,抓住重点看即可。其中在第22行调用了Request的deliverResponse()方法,有没有感觉很熟悉?没错,这个就是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。

好了,到这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢?对了,还记得在文章一开始的那张流程图吗,刚才还不能理解,现在我们再来重新看下这张图:


volley android支持安卓12 android volley原理_框架

其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。

怎么样,是不是感觉现在理解这张图已经变得轻松简单了?好了,到此为止我们就把Volley的用法和源码全部学习完了,相信你已经对Volley非常熟悉并可以将它应用到实际项目当中了,那么Volley完全解析系列的文章到此结束,感谢大家有耐心看到最后。