目录
InnoDB存储架构
表空间Tablespace
区Extent
段Segment
页Page
整体结构
行Row
索引树节点与page的关系
如何一步步存储一条数据
页合并
页分裂
删除对应的存储分布
Innodb中的碎片
删除对SQL的影响
删除优化建议
控制业务账号权限
删除改为标记删除
数据归档方式
总结
InnoDB存储架构
从这张图可以看到,InnoDB存储结构主要包括两部分:逻辑存储结构和物理存储结构。
逻辑上是由表空间tablespace —> 段segment或者inode —> 区Extent ——>数据页Page构成,Innodb逻辑管理单位是segment,空间分配的最小单位是extent,每个segment都会从表空间FREE_PAGE中分配32个page,当这32个page不够用时,会按照以下原则进行扩展:如果当前小于1个extent,则扩展到1个extent;当表空间小于32MB时,每次扩展一个extent;表空间大于32MB,每次扩展4个extent。
物理上主要由系统用户数据文件,日志文件组成,数据文件主要存储MySQL字典数据和用户数据,日志文件记录的是data page的变更记录,用于MySQL Crash时的恢复。
表空间Tablespace
假如,我想成为一名文学家,立志写一部长篇巨著,那么就需要把文字记录在纸张上。第一步就是从造纸厂购买两大卷未做裁切的白纸。相应的,在计算机中,所有数据也需要记录在磁盘、磁带、光盘等存储介质上进行长期保存。
这些介质被划分成文件,它们是存储数据的物理空间。
由于我买了两卷纸,而任何一卷都可以存储文字,因此每当我开始下笔时,都费劲心思难以抉择:到底应该记录到哪一卷中?这对于有选择困难症的我来说苦不堪言。
于是,我计划请一个秘书,把要写的内容口述给他,通过他帮我文字誊写到具体的纸卷上,至于到底写在哪一卷上,我无所谓。
同理,用程序操作文件时,首先也需要指定文件路径。可是在数据库中,表是面向开发,而存储设备是面向运维。开发创建表时,很难确定一张表对应哪个文件。而运维也会根据实际情况动态为数据库添加文件。
表与文件的紧耦合严重制约了数据库使用的便利性,于是在文件与表之间增加一层表空间便顺理成章,它向上对接表,向下对接文件;开发者只需在表空间中操作表,而具体存储由Innodb存储引擎根据表空间自动维护。
表空间是InnoDB存储引擎中逻辑结构的最高层,所有数据逻辑上都存储在表空间中。
InnoDB存储包括三类表空间:系统表空间,用户表空间,Undo表空间。
系统表空间: 主要存储MySQL内部的数据字典数据,如information_schema下的数据。
用户表空间: 当开启innodb_file_per_table=1时,数据表从系统表空间独立出来存储在以table_name.ibd命令的数据文件中,结构信息存储在table_name.frm文件中。
Undo表空间: 存储Undo信息,如快照一致读和flashback都是利用undo信息。
系统表空间
存储change buffer, doublewrite buffer以及与innodb相关的所有对象的元数据。如:表空间和数据库信息,表结构与字段信息等等。mysql8.0中移除了原先用于存储表结构信息的.frm文件,所有元数据都存储在此系统表空间中。系统表空间information_schema库中相关的核心视图如下:
假如数据库world中有一张对应表user表,测试如下:查询表所属表空间信息:select * from information_schema.innodb_tablespace where name='world/user'; (space:表空间id,name:表空间名)
查询表空间对应的数据文件信息:select * from information_schema.files where tablespace_name='world/user'; (file_name:数据文件相对路径)
查询表对应的id: select * from information_schema.innodb_tables where name='world/user';
查询主键索引对应的根节点所在的页号(root page no) select * from information_schema.innodb_indexes where table_id=1269 and name='primary'; (page_no:B+树 root page no;name='primary'表示主键索引)
系统表空间也有对应的数据文件,这个文件默认为(windows下)xxx\MySQL Server 8.0\Data\ibdata1。只有系统表空间可以指定多个文件,其它类型的表空间都只能指定一个数据文件。
独立表空间
每张表对应一个独立的表空间。通过配置my.ini中的参数:innodb_file_per_table=1启动独立表空间,否则,默认为系统表空间。5.6.6之后此配置默认开启,因此默认为独立表空间。
当创建表时,会自动为表创建一个对应表名的表空间,并在数据库目录下生成一个“表名.ibd”的表空间文件。如:在数据库world中创建user表结果如下
普通表空间 即通过“create tablespace 表空间名” 手动创建的表空间。
临时表空间 存储临时表以及临时表变化对应的回滚段。默认的临时文件为(windows下)xxx\MySQL Server 8.0\Data\ibtmp1
区Extent
由于一卷原始的纸太过于庞大,展开后可能会铺满我豪宅地板十几层,甚至几十层,非常不方便使用,毕竟我9平米的豪宅还需要留出空间会客。最好的办法就是把这些纸张切割成一张张A4大小的数据页。
同理,一个磁盘或文件的容量也是非常可观,极其不便管理,因此innodb把文件划分成一个个大小相等的存储块,这些块也被称为页;
对于一部文学故事而言,只要通过页码就可以依次找到下一页,从而完整的读完这个故事。通常我们读完第一页时,会马上接着读第二页,但此时对应的书页如果零散的分布在卧室、厕所、客厅,将使阅读体验大大折扣。如果能把这些分散的书页合订成本,就可以极大地提高阅读的便利性。
根据局部性原理,cpu在使用的数据时,下一步也会大概率使用逻辑上相邻的数据。因此为了提高数据读操作的性能,innodb把逻辑上相临的数据尽可能在物理上也存储在相邻的页中;为了实现这一目标,Innodb引入了区/簇的概念;
一个区/簇是物理上连续分配的一段空间,extent又被划分成连续的页,以存储同一逻辑单元的数据(如下面的索引段、数据段)。一个区/簇,默认由64个连续的页(Page)组成,每个页默认大小为16K。
实际上,innodb是先把文件划分成连续的区/簇,然后在区/簇内再划分出连续的页,从总体上看:一个文件即是微观上一系列连续的页组成,也是宏观上一系列连续的区/簇组成。知道一个页的页号和页大小就可以计算出此页在磁盘上的具体位置,同理知道一个页号就可以计算出一个区/簇的大小以及页所在的区/簇是第几个区/簇(它本身没有编号,但假设第一个区/簇为0号,可以知道它逻辑上是第几个)。
如果把页看作现实书本中的页,那么extent可以看作现实中的书本。
区的目的是为逻辑单元分配连续的空间,同时也用于管理区内的存储空间状态(如:区内哪些页已满,哪些还未使用,哪些包含碎片)。具体通过不同的区/簇链表来指明区本身的空间状态,以及通过XDES Entry中的XDES_BITMAP指明区内页的空间状态)。
段Segment
当年大刘写完三体第一本后,迟迟没有更新,但由于内容过于精彩,导致奥巴马又是写邮件,又是通过外交手段催更。为了避免中美关系受损,大刘如法炮制,又连续写了两本。
在逻辑上故事情连贯的这三本书总体上都叫三体,于是我们称这种具有相关性的多本书为一套。同理,innodb把逻辑上有关联的区/簇归属为一个段。
为了使同一逻辑单元可以在物理上具有连续的存储空间,Innodb提出的区的概念,但是io的最小操作单元为页,一次io并不能写满一个区,同时数据是可以擦除(删除)重写,因此必须记录区自身以及区内的空间状态:哪些区已写满,哪些区还未使用,哪些区还有碎片空间。
innodb中把这些记录具有相关性区的存储空间状态的管理信息称为段实体,段实体所管理的区的总和称为段。段的目的是管理区的使用情况以及为数据分配空间时,提供空间存储状态。
段可以类似的看做现实中一套书中的套。
innodb中数据是以B+树的方式组织,叶子节点存储关键字与行数据,非叶子节点存储关键字(索引数据)与页号。索引数据与业务行数据分别具有不同的数据结构,因此它们被分开存储,非叶子节点的索引数据存储在一个段中,叶子节点的业务数据存储在另一个段,对应的它们也分别存储在不同结构的区和页中。
数据逻辑结构如下:
物理存储结构如下:
段是表空间的逻辑组成部分,用来存储具有相同意义的数据,如:B+对中的非叶子节点或B+树中的叶子节点。常见的段有数据段、索引段、回滚段等。
每创建一个索引就会创建两个段:一个是数据段(B+树对应的叶子节点),一个是索引段(非叶子节点)。对于聚集索引(一般是主键索引)数据段存储的是索引关键字和业务行(所有字段);对于非聚集索引,数据段存储的是索引关键字和主键;如果通过非聚集索引查询,需要先通过B+树查出主键,再通过主键从聚集索引中二次查询具体的行,这称为回表。下图:左边为二级索引(非聚集索引),右边为主键索引(聚集索引)
表数据是通过聚集索引组织存储,也即按主键索引创建的B+树存储数据,因此创建表时应该同时指定一个主键。如果没有指定主键,也没有创建唯一索引,表会默认创建一个自增的隐藏字段:row_id做为聚集索引B+树的关键字段。因为是隐藏字段,所以这个字段只能回表查询时使用。
页Page
正如上面所说,页就像现实中一本书的书页一样,是innodb中io操作的最小单位。innodb中的页类似于现实中书本的页。
页的大小默认是16KB;可以通过innodb_page_size参数指定,可选项为:4KB、8KB、16KB、32KB、64KB;当page size为4、8、16KB时,对应一个extent的page数量同步变化,以保证extent(区/簇)大小保持1M不变。当page size为32KB或64KB时,extent内的page数量保证不变,extent同步变为2M和4M;
每个页都有一个对应的从0开始的编号,这个编号叫做页号。因为表空间的数据文件会被划分成大小相等的页,所以知道页号,再根据文件的初始位置,就可以计算出页在磁盘中的准确地址。
同理,一张表对应一个聚集索引,而聚集索引元数据中指定了root page的页号,因此Innodb引擎可以根据页号和页大小计算出索引B+树root page的准确地址,从而对整个表数据进行操作。
page主要用来存储业务相关的数据,但是为了管理内存分配而存在的extent和segment信息也需要page存储。innodb根据page存储内容不同分以下几类:
FSP HDR 页
一个表空间可能对应多个数据文件,每个文件都有自己的编号。表空间是数据库中最顶层的结构,通过系统表空间中的元数据可以查询对应的表空间文件等元信息,却无法查询当前表空间对应的段、区等信息,因此也无法获取表空间中页的存储状态。
为了使表空间的物理存储有一个对外访问的入口,规定表空间中的0号文件的0号page页中存储表空间信息以及当前表空间所拥有的段链表的指针。
任何一个页都由页头、页身和页尾组成。
一个page默认16KB,而段和区对应的指针数据量并不大,因此只需要部分头信息就可以维护。而剩下的大部分空间,则用来存储当前表空间拥有的部分发区实体信息。
页头
指明当前页号、类型和所属表空间。页尾:主要用于数据的校验。页身:这是页中用来存储数据的主要部分。
页身又分为表空间首页头信息区和业务数据区。FSP HEADER:(1):表空间信息:对应空间id、表空间总页数等 (2):段信息:已写满数据的段实体所在页的链表指针、未写满数据的段实体所在页的链表指针(指向的不是段实体而是段实体所在的页,一页存储85个段实体)。(3):碎片区/簇信息:空闲的碎片区/簇(XDES实体本身,不是XEDS实体所在的页)链表指针、未写满的碎片区链表指针、已写满的碎片区链表。这些区/簇信息不属于任何段,而属于表空间,用于给段下次申请空间时分配。
理论上一个区/簇会完整的分配给一个段,但一些区/簇创建后直接归属表空间,用做碎片区。为了减少浪费,只会把这些区中的部分页分配给一个指定的段。
例如:当你豪言万丈的宣布要写一部旷世巨著,并要求秘书给你五百页纸时,秘书很可能已经看透了一切,一面是是是的回应你,一面只会给你取3页纸,因为他认为你很可能7天憋不出6个字。同理,innodb给某一个新创建的段分配空间时,并不是一开始就分配一个区/簇,而是从碎片区中先分配32页,只有这32页使用完,innodb才认为这个段是一个大数据段,从而正式开始为其分配一个完整的区/簇。
数据部分
FSP HEADER中指向了段链表和碎片区链表,但这些只是链表指针,真正的区信息节点则存放在当前页的数据区。一个区/簇信息实体称为一个XDES Entry(eXtent DEScript);一页存储256个XDES Entry。
XDES Entry如上面图示,包含了段id(如果分配给一个段)、碎片区链表中的下一个节点指针等。它不包含页信息,因为区/簇有对应的物理空间,它空间内的页就是拥有的页,因此无需在entry中指明。
细心的朋友会发现,XDES Entry虽然是描述区/簇,但却没有指定区/簇的编号或地址,那么它到底对应物理空间中哪块区/簇呢?
区/簇本身没有编号,但区/簇像页一样,也是从文件第一个字节开始连续分配的。同时,每隔256个区/簇的第一个区的第一页就是这256个区/簇的索引页,即XDES page。
而XDES page有page No,因此就可以计算出此XDES page的地址,也即此page所有的区/簇的地址。紧接着的255个区/簇都有一个对应的XDES Entry存储在XDES page中,这些XDES Entry在此page中位置的偏移量,即为后面255个区/簇的偏移量,从当前XDES page所有区/簇位置以及对应的偏移量就可以计算出一个XDES Entry对应的区/簇的物理位置。
FSP HDR页就像一个表空间的封面页,是整个表空间的入口页。
XDES 页
XDES 页即eXtent DEScript 区/簇描述页的缩写,用来存储区/簇信息实体的页,即存储XDES Entry的页。它除了与FSP页中FSP HEADER不同外,其它内容一模一样。本质上首页也是一个XDES页,只是首页是整个表空间的第一页,因此它又兼职记录了表空间信息。
XDES Entry
存储了区自身信息的逻辑块。
因为一页XDES只能存储256个entry,对应256个区,因此逻辑上每隔256个区,就需要一个xdex页来存储下一系列256个区的信息。
INODE 页
同区/簇对应的Entry信息一样,表空间只是指向了各种状态的段页(非段实体)链表,而未存储段信息本身。inode页就是用来存储描述段信息 inode entry的页。
一个inode页默认存储85条段实体,每个实体又指向了本段对应的不同状态的区/簇链表:未使用的区/簇链表、已写满的区/簇链表、未写满的区/簇链表。
Index 页 以上的页均是存储物理空间使用状态,并用于管理区/簇和段本身的页。index页则是用于最终存储业务数据。innodb中表数据是通过聚集索引组织存储的,而叶子节点存储在一个段中,非叶子节点存储在另一个段中,但最终都会存储在Index类型的页中。
index页详细项如下图:
index页页内存储结构如下图:
页内的业务数据是一个逻辑上按顺序排列的单向链表。页内有两条虚拟行,会别代表整个页中索引值最小的行和最大的行,即链表中第一行和最后一行,用来界定链表的范围。
另外,对于索引段,一页大概有16250B用来存储用户数据。一行包含一个4字节的int类型key,一个指向叶子节点占6字节的页号,大概6字节的row header,总共大概16字节。那么一页粗略的计算可以存储16250/16约为1000条。为了优化查询,每隔4-8行数据把这几行数据的第一行地址在存放在一个称为slot的2字节空间中,这些slot一起组成一个称为Page directory的数组中。
如图:数组最后一个slot存储第一行infimum,倒数据第二个slot存储row4,正序第一个slot存储最后一行数据supremum。这样page directory数组就是一个有序的数组,可以通过一次二分查找算法快速定位数据块,然后在这个块中遍历找到最终符合要求的数据。
注意:由于用户行与页尾之间有空闲空间,而slot个数受页内行数影响而不固定,即page dirctory数组长度不固定,因此通过逆序向前追加的方式分配slot。
整体结构
以上是表空间中不同对象各自的结构和数据信息,下面从整体的角度看一看各个组件是如何关联的。
微观上,表空间文件从物理上分隔为大小相等且连续的页。
宏观上,表空间文件从物理上分隔为大水相乘且连续的区/簇。
0号文件的0号页称为FSP页,即首页,可以假定为表空间的封面页。它存储了整个表空间其它组件的链表指针,是整个表空间的入口页。
从逻辑上,FSP页通过两条线指向不同组件。(1):通过FSP_SEG_INODES_FULL(已写满的段页链表)和FSP_SEG_INODES_FREE(未写满的段页链表),指向段信息。段实体又通过FSEG_FREE(空闲的区/簇链表)、FSEG_FULL(写满的区/簇)、FSEG_NOT_FULL(未写满的区/簇),指向属于本段的区/簇。(2):通过FSP_FREE(空闲的区/簇链表)、FSP_FREE_FRAG(未写满的碎片区/簇)、FSP_FULL_FRAG(已写满的碎片区/簇),指向不属于任何段的区/簇。
每256个区/簇的第一个区/簇的第一页存储这256个区/簇的管理信息。0号页因为特殊叫做FSP页,其它叫做XDES页。通过这个页号以及存储在其中的Entry位置偏移量,可以很容易的计算出这256个区在磁盘上的位置。因此即使XDES Entry中没有记录区/簇的编号或地址,也可以知道每个Entry管理的是哪个区/簇。
当index页中插入一条数据时,如果本页已满,则需要向此页所在的区/簇申请空间,如果此区/簇也满了,则向所在的段申请,如果段也满了,则会向表空间申请,表空间会通过操作系统向磁盘申请3个区/簇,并加入到FSP中的FSP_FREE链表中。然后再一级级分配,存储到其对应的链表中。
行Row
以上介绍的所有对象都是为了给业务数据分配一块用来存储的物理空间,到此终于可以在指定的页中记录业务数据。而innodb是基于行进行存储,下面简单的看一看行Compact格式的存储结构。
每条记录都包含一系列头信息,描述当前记录的存储状态如图。但是除了头信息外,则根据记录所在节点不同存储的数据也有所不同。
聚集索叶子节点,记录存储的是表中的业务行,除行数据本身外,还包含了事务id,回滚段指针,以及在没有指定主键和唯一索引时还包含一个隐藏的row_id。
非叶子节点针对的是B+树搜索,因此记录的是子节点的最小记录值以及子节点的页号。
索引树节点与page的关系
Innodb page只是物理上的存储空间,相当于一本书的一页,仅仅是数据的载体。B+树节点是数据的逻辑结构,理论上它们没有必然的关系。可以在一个page页内存储一棵完整的B+树,也可以多个page页一起存储一棵完整的B+树,甚至可以把page页与B+树中的节点一一对应。
实际上Innodb中为了实现简单,B+树节点与page页是一一对应,以下是其简单的扩展过程。
假设有一个聚集索引B+树开始的样子如下:
如果聚集索引使用的是自增的主键,那么数据是以追加的方式存储在每一页中,如果页已经存满,只需要重新分配一页空间继续追加即可。
如果聚集索引使用的是无顺序的列如uuid,由于B+是一个逻辑上有序的集合,那么向B+树中插入数据就很可能插入到原先已经满了的page页中,就会导致原来的页进行分裂。会像向数组中插入数据一样先进行移动,为新数据腾出空间。因此建议使用有序的列做聚集索引。
如何一步步存储一条数据
经历了千辛万苦,终于可以从头到尾插入一条数据,一探innodb如何一步步把数据存储到文件中。妹妹们估计已经听的如痴如醉,想想都开心,我可真是个小机灵鬼。
伸伸懒腰,甜甜的望向妹妹们。
哎,人呢?我是穿越到平等空间了吗?
算了,善始善终,我就讲给自己听,迷倒不了别人,我还不信迷倒不了自己。
在数据库world中创建表user
CREATE TABLE user (
id int(11) NOT NULL AUTO_INCREMENT,
name varchar(10) DEFAULT NULL,
age int(11) DEFAULT NULL,
gender smallint(6) DEFAULT NULL,
create_time date DEFAULT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
innodb向系统表空间的information_schema库的tables和columns中存入表结构信息
为索引创建两个段:索引段(非叶子节点)和数据段(叶子节点),并把段信息存储到表空间封面页的段链表中。
为索引创建第一页即Root Page,把段信息记录在Root Page的段链表中,从而管理本B+树的段信息。同时把Root PageNo记录到information_schema.innodb_indexes中,如上图。从页使逻辑表与物理存储关联起来,这个Root Page相当于索引的封面。
通过Root Page No 4计算出Root Page的物理地址。根据Root Page中指定的段信息,向Root Page中插入索引数据,向数据段对应的页中插入数据行,并关联两种类型的页。
如果一页空间不足,会计算出当前页所在的区/簇并向其申请空间,区/簇则会根据 XDES Entry中的bitmap查询空闲的页并进行分配。如果区/簇也没有空闲空间,则会一级一级向上面的段、表空间、操作系统申请所需空间。
申请到的表空间会存储在各自对应的链表中(如:表空间申请到的空间会存储在对应的FSP_FREE链表中)。
在页分配或扩展时,为了保证通过innodb_indexes中的Root Page No能找到它,Root Page物理空间与B+树对应的Root 节点保持不变,即页号不变,永远是页号为4的那块空间。
当B+对应的物理页不断变化时,为了保证树的平衡,会产生新的Root节点,为了保持Root页不变,innodb是通过交换的方式,把新的Root节点数据复制交换到原来的Root Page页,这样就可以保证Root Page永远不变,即保证表与物理空间的关联永远不会断开。
页合并
当你删了一行记录时,实际上记录并没有被物理删除,记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当页中删除的记录达到MERGE_THRESHOLD
(默认页体积的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。
在示例中,页#6使用了不到一半的空间,页#5又有足够的删除数量,现在同样处于50%使用以下。从InnoDB的角度来看,它们能够进行合并。
合并操作使得页#5保留它之前的数据,并且容纳来自页#6的数据。页#6变成一个空页,可以接纳新数据。
如果我们在UPDATE操作中让页中数据体积达到类似的阈值点,InnoDB也会进行一样的操作。
规则就是:页合并发生在删除或更新操作中,关联到当前页的相邻页。如果页合并成功,在INFOMATION_SCHEMA.INNODB_METRICS
中的index_page_merge_successful
将会增加。
页分裂
前面提到,页可能填充至100%,在页填满了之后,下一页会继续接管新的记录。但如果有下面这种情况呢?
页#10没有足够空间去容纳新(或更新)的记录。根据“下一页”的逻辑,记录应该由页#11负责。然而:
页#11也同样满了,数据也不可能不按顺序地插入。怎么办?
还记得之前说的链表吗(译注:指B+树的每一层都是双向链表)?页#10有指向页#9和页#11的指针。
InnoDB的做法是(简化版):
- 创建新页
- 判断当前页(页#10)可以从哪里进行分裂(记录行层面)
- 移动记录行
- 重新定义页之间的关系
新的页#12被创建:
页#11保持原样,只有页之间的关系发生了改变:
- 页#10相邻的前一页为页#9,后一页为页#12
- 页#12相邻的前一页为页#10,后一页为页#11
- 页#11相邻的前一页为页#10,后一页为页#13
(译注:页#13可能本来就有,这里意思为页#10与页#11之间插入了页#12)
这样B树水平方向的一致性仍然满足,因为满足原定的顺序排列逻辑。然而从物理存储上讲页是乱序的,而且大概率会落到不同的区。
规律总结:页分裂会发生在插入或更新,并且造成页的错位(dislocation,落入不同的区)
InnoDB用INFORMATION_SCHEMA.INNODB_METRICS
表来跟踪页的分裂数。可以查看其中的index_page_splits
和index_page_reorg_attempts/successful
统计。
一旦创建分裂的页,唯一(译注:实则仍有其他方法,见下文)将原先顺序恢复的办法就是新分裂出来的页因为低于合并阈值(merge threshold)被删掉。这时候InnoDB用页合并将数据合并回来。
另一种方式就是用OPTIMIZE
重新整理表。这可能是个很重量级和耗时的过程,但可能是唯一将大量分布在不同区的页理顺的方法。
另一方面,要记住在合并和分裂的过程,InnoDB会在索引树上加写锁(x-latch)。在操作频繁的系统中这可能会是个隐患。它可能会导致索引的锁争用(index latch contention)。如果表中没有合并和分裂(也就是写操作)的操作,称为“乐观”更新,只需要使用读锁(S)。带有合并也分裂操作则称为“悲观”更新,使用写锁(X)。
删除对应的存储分布
创建空表查看空间变化
mysql> create table user(id bigint not null primary key auto_increment,
-> name varchar(20) not null default '' comment '姓名',
-> age tinyint not null default 0 comment 'age',
-> gender char(1) not null default 'M' comment '性别',
-> phone varchar(16) not null default '' comment '手机号',
-> create_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
-> update_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
-> ) engine = InnoDB DEFAULT CHARSET=utf8mb4 COMMENT '用户信息表';
Query OK, 0 rows affected (0.26 sec)
# ls -lh user1.ibd
-rw-r----- 1 mysql mysql 96K Nov 6 12:48 user.ibd
设置参数innodb_file_per_table=1时,创建表时会自动创建一个segment,同时分配一个extent,包含32个data page的来存储数据,这样创建的空表默认大小就是96KB,extent使用完之后会申请64个连接页,这样对于一些小表,或者undo segment,可以在开始时申请较少的空间,节省磁盘容量的开销。
# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000000, page type <Freshly Allocated Page>
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 6: #总共分配的页数
Freshly Allocated Page: 2 #可用的数据页
Insert Buffer Bitmap: 1 #插入缓冲页
File Space Header: 1 #文件空间头
B-tree Node: 1 #数据页
File Segment inode: 1 #文件端inonde,如果是在ibdata1.ibd上会有多个inode。
插入数据后的空间变化
mysql> DELIMITER $$
mysql> CREATE PROCEDURE insert_user_data(num INTEGER)
-> BEGIN
-> DECLARE v_i int unsigned DEFAULT 0;
-> set autocommit= 0;
-> WHILE v_i < num DO
-> insert into user(`name`, age, gender, phone) values (CONCAT('lyn',v_i), mod(v_i,120), 'M', CONCAT('152',ROUND(RAND(1)*100000000)));
-> SET v_i = v_i+1;
-> END WHILE;
-> commit;
-> END $$
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER ;
#插入10w数据
mysql> call insert_user_data(100000);
Query OK, 0 rows affected (6.69 sec)
# ls -lh user.ibd
-rw-r----- 1 mysql mysql 14M Nov 6 10:58 /data2/mysql/test/user.ibd
# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001> #增加了一个非叶子节点,树的高度从1变为2.
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
delete数据后的空间变化
mysql> select min(id),max(id),count(*) from user;
+---------+---------+----------+
| min(id) | max(id) | count(*) |
+---------+---------+----------+
| 1 | 100000 | 100000 |
+---------+---------+----------+
1 row in set (0.05 sec)
#删除50000条数据,理论上空间应该从14MB变长7MB左右。
mysql> delete from user limit 50000;
Query OK, 50000 rows affected (0.25 sec)
#数据文件大小依然是14MB,没有缩小。
# ls -lh /data2/mysql/test/user1.ibd
-rw-r----- 1 mysql mysql 14M Nov 6 13:22 /data2/mysql/test/user.ibd
#数据页没有被回收。
# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
#在MySQL内部是标记删除,
mysql> use information_schema;
Database changed
mysql> SELECT A.SPACE AS TBL_SPACEID, A.TABLE_ID, A.NAME AS TABLE_NAME, FILE_FORMAT, ROW_FORMAT, SPACE_TYPE, B.INDEX_ID , B.NAME AS INDEX_NAME, PAGE_NO, B.TYPE AS INDEX_TYPE FROM INNODB_SYS_TABLES A LEFT JOIN INNODB_SYS_INDEXES B ON A.TABLE_ID =B.TABLE_ID WHERE A.NAME = 'test/user1';
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
| TBL_SPACEID | TABLE_ID | TABLE_NAME | FILE_FORMAT | ROW_FORMAT | SPACE_TYPE | INDEX_ID | INDEX_NAME | PAGE_NO | INDEX_TYPE |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
| 1283 | 1207 | test/user | Barracuda | Dynamic | Single | 2236 | PRIMARY | 3 | 3 |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
1 row in set (0.01 sec)
PAGE_NO = 3 标识B-tree的root page是3号页,INDEX_TYPE = 3是聚集索引。INDEX_TYPE取值如下:
0 = nonunique secondary index;
1 = automatically generated clustered index (GEN_CLUST_INDEX);
2 = unique nonclustered index;
3 = clustered index;
32 = full-text index;
#收缩空间再后进行观察
MySQL内部不会真正删除空间,而且做标记删除,即将delflag:N修改为delflag:Y,commit之后会会被purge进入删除链表,如果下一次insert更大的记录,delete之后的空间不会被重用,如果插入的记录小于等于delete的记录空会被重用,这块内容可以通过知数堂的innblock工具进行分析。
Innodb中的碎片
碎片的产生
我们知道数据存储在文件系统上的,总是不能100%利用分配给它的物理空间,删除数据会在页面上留下一些”空洞”,或者随机写入(聚集索引非线性增加)会导致页分裂,页分裂导致页面的利用空间少于50%,另外对表进行增删改会引起对应的二级索引值的随机的增删改,也会导致索引结构中的数据页面上留下一些"空洞",虽然这些空洞有可能会被重复利用,但终究会导致部分物理空间未被使用,也就是碎片。
同时,即便是设置了填充因子为100%,Innodb也会主动留下page页面1/16的空间作为预留使用(An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future index growth)防止update带来的行溢出。
mysql> select table_schema,
-> table_name,ENGINE,
-> round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,
-> round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio
-> from information_schema.TABLES where TABLE_SCHEMA= 'test'
-> and TABLE_NAME= 'user';
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test | user | InnoDB | 4 | 50000 | 4 | 0 | 6 | 149.42 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)
其中data_free是分配了未使用的字节数,并不能说明完全是碎片空间。
碎片的回收
对于InnoDB的表,可以通过以下命令来回收碎片,释放空间,这个是随机读IO操作,会比较耗时,也会阻塞表上正常的DML运行,同时需要占用额外更多的磁盘空间,对于RDS来说,可能会导致磁盘空间瞬间爆满,实例瞬间被锁定,应用无法做DML操作,所以禁止在线上环境去执行。
#执行InnoDB的碎片回收
mysql> alter table user engine=InnoDB;
Query OK, 0 rows affected (9.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
##执行完之后,数据文件大小从14MB降低到10M。
# ls -lh /data2/mysql/test/user1.ibd
-rw-r----- 1 mysql mysql 10M Nov 6 16:18 /data2/mysql/test/user.ibd
mysql> select table_schema, table_name,ENGINE, round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS, round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio from information_schema.TABLES where TABLE_SCHEMA= 'test' and TABLE_NAME= 'user';
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test | user | InnoDB | 5 | 50000 | 5 | 0 | 2 | 44.29 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)
删除对SQL的影响
未删除前的SQL执行情况
#插入100W数据
mysql> call insert_user_data(1000000);
Query OK, 0 rows affected (35.99 sec)
#添加相关索引
mysql> alter table user add index idx_name(name), add index idx_phone(phone);
Query OK, 0 rows affected (6.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
#表上索引统计信息
mysql> show index from user;
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user | 0 | PRIMARY | 1 | id | A | 996757 | NULL | NULL | | BTREE | | |
| user | 1 | idx_name | 1 | name | A | 996757 | NULL | NULL | | BTREE | | |
| user | 1 | idx_phone | 1 | phone | A | 2 | NULL | NULL | | BTREE | | |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set (0.00 sec)
#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.00 sec)
#执行SQL语句
mysql> select id, age ,phone from user where name like 'lyn12%';
+--------+-----+-------------+
| id | age | phone |
+--------+-----+-------------+
| 124 | 3 | 15240540354 |
| 1231 | 30 | 15240540354 |
| 12301 | 60 | 15240540354 |
.............................
| 129998 | 37 | 15240540354 |
| 129999 | 38 | 15240540354 |
| 130000 | 39 | 15240540354 |
+--------+-----+-------------+
11111 rows in set (0.03 sec)
mysql> explain select id, age ,phone from user where name like 'lyn12%';
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| 1 | SIMPLE | user | range | idx_name | idx_name | 82 | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)
#查看相关状态呢变量
mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');
+-------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 11111 | #请求读的行数
| INNODB_DATA_READS | 7868409 | #数据物理读的总数
| INNODB_PAGES_READ | 7855239 | #逻辑读的总数
| LAST_QUERY_COST | 10.499000 | #SQL语句的成本COST,主要包括IO_COST和CPU_COST。
+-------------------+----------------+
4 rows in set (0.00 sec)
删除后的SQL执行情况
#删除50w数据
mysql> delete from user limit 500000;
Query OK, 500000 rows affected (3.70 sec)
#分析表统计信息
mysql> analyze table user;
+-----------+---------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+-----------+---------+----------+----------+
| test.user | analyze | status | OK |
+-----------+---------+----------+----------+
1 row in set (0.01 sec)
#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.01 sec)
mysql> select id, age ,phone from user where name like 'lyn12%';
Empty set (0.05 sec)
mysql> explain select id, age ,phone from user where name like 'lyn12%';
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| 1 | SIMPLE | user | range | idx_name | idx_name | 82 | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)
mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');
+-------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 0 |
| INNODB_DATA_READS | 7868409 |
| INNODB_PAGES_READ | 7855239 |
| LAST_QUERY_COST | 10.499000 |
+-------------------+----------------+
4 rows in set (0.00 sec)
结果统计分析
操作 | COST | 物理读次数 | 逻辑读次数 | 扫描行数 | 返回行数 | 执行时间 |
初始化插入100W | 10.499000 | 7868409 | 7855239 | 22226 | 11111 | 30ms |
100W随机删除50W | 10.499000 | 7868409 | 7855239 | 22226 | 0 | 50ms |
这也说明对普通的大表,想要通过delete数据来对表进行瘦身是不现实的,所以在任何时候不要用delete去删除数据,应该使用优雅的标记删除。
删除优化建议
控制业务账号权限
对于一个大的系统来说,需要根据业务特点去拆分子系统,每个子系统可以看做是一个service,例如美团APP,上面有很多服务,核心的服务有用户服务user-service,搜索服务search-service,商品product-service,位置服务location-service,价格服务price-service等。每个服务对应一个数据库,为该数据库创建单独账号,同时只授予DML权限且没有delete权限,同时禁止跨库访问。
#创建用户数据库并授权
create database mt_user charset utf8mb4;
grant USAGE, SELECT, INSERT, UPDATE ON mt_user.* to 'w_user'@'%' identified by 't$W*g@gaHTGi123456';
flush privileges;
删除改为标记删除
在MySQL数据库建模规范中有4个公共字段,基本上每个表必须有的,同时在create_time列要创建索引,有两方面的好处:
一些查询业务场景都会有一个默认的时间段,比如7天或者一个月,都是通过create_time去过滤,走索引扫描更快。
一些核心的业务表需要以T +1的方式抽取数据仓库中,比如每天晚上00:30抽取前一天的数据,都是通过create_time过滤的。
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键id',
`is_deleted` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否逻辑删除:0:未删除,1:已删除',
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
#有了删除标记,业务接口的delete操作就可以转换为update
update user set is_deleted = 1 where user_id = 1213;
#查询的时候需要带上is_deleted过滤
select id, age ,phone from user where is_deleted = 0 and name like 'lyn12%';
数据归档方式
通用数据归档方法
#1. 创建归档表,一般在原表名后面添加_bak。
CREATE TABLE `ota_order_bak` (
`id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT '主键',
`order_id` varchar(255) DEFAULT NULL COMMENT '订单id',
`ota_id` varchar(255) DEFAULT NULL COMMENT 'ota',
`check_in_date` varchar(255) DEFAULT NULL COMMENT '入住日期',
`check_out_date` varchar(255) DEFAULT NULL COMMENT '离店日期',
`hotel_id` varchar(255) DEFAULT NULL COMMENT '酒店ID',
`guest_name` varchar(255) DEFAULT NULL COMMENT '顾客',
`purcharse_time` timestamp NULL DEFAULT NULL COMMENT '购买时间',
`create_time` datetime DEFAULT NULL,
`update_time` datetime DEFAULT NULL,
`create_user` varchar(255) DEFAULT NULL,
`update_user` varchar(255) DEFAULT NULL,
`status` int(4) DEFAULT '1' COMMENT '状态 :1 正常 , 0 删除',
`hotel_name` varchar(255) DEFAULT NULL,
`price` decimal(10,0) DEFAULT NULL,
`remark` longtext,
PRIMARY KEY (`id`),
KEY `IDX_order_id` (`order_id`) USING BTREE,
KEY `hotel_name` (`hotel_name`) USING BTREE,
KEY `ota_id` (`ota_id`) USING BTREE,
KEY `IDX_purcharse_time` (`purcharse_time`) USING BTREE,
KEY `IDX_create_time` (`create_time`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) (
PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')),
PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')),
PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')),
PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')),
PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')),
PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')),
PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')),
PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')),
PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')),
PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')),
PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')),
PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')),
PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')),
PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')),
PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')),
PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')),
PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));
#2. 插入原表中无效的数据(需要跟开发同学确认数据保留范围)
create table tbl_p201808 as select * from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59';
#3. 跟归档表分区做分区交换
alter table ota_order_bak exchange partition p201808 with table tbl_p201808;
#4. 删除原表中已经规范的数据
delete from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59' limit 3000;
优化后的归档方式
#1. 创建中间表
CREATE TABLE `ota_order_2020` (........) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) (
PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')),
PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')),
PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')),
PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')),
PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')),
PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')),
PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')),
PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')),
PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')),
PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')),
PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')),
PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')),
PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')),
PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')),
PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')),
PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')),
PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));
#2. 插入原表中有效的数据,如果数据量在100W左右可以在业务低峰期直接插入,如果比较大,建议采用dataX来做,可以控制频率和大小,之前我这边用Go封装了dataX可以实现自动生成json文件,自定义大小去执行。
insert into ota_order_2020 select * from ota_order where create_time between '2020-08-01 00:00:00' and '2020-08-31 23:59:59';
#3. 表重命名
alter table ota_order rename to ota_order_bak;
alter table ota_order_2020 rename to ota_order;
#4. 插入差异数据
insert into ota_order select * from ota_order_bak a where not exists (select 1 from ota_order b where a.id = b.id);
#5. ota_order_bak改造成分区表,如果表比较大不建议直接改造,可以先创建好分区表,通过dataX把导入进去即可。
#6. 后续的归档方法
#创建中间普遍表
create table ota_order_mid like ota_order;
#交换原表无效数据分区到普通表
alter table ota_order exchange partition p201808 with table ota_order_mid;
##交换普通表数据到归档表的相应分区
alter table ota_order_bak exchange partition p201808 with table ota_order_mid;
这样原表和归档表都是按月的分区表,只需要创建一个中间普通表,在业务低峰期做两次分区交换,既可以删除无效数据,又能回收空,而且没有空间碎片,不会影响表上的索引及SQL的执行计划。
总结
表空间是数据库中的逻辑结构,它解耦了表、索引等与文件的关联。
段也是一个逻辑结构,它让具有具体相同逻辑含义和相同存储结构的数据归为一组,方便管理。
区是物理存储结构,对应大磁盘中真实的物理空间。它从文件第一个字节开始按相同大小划分,并通过XDES Entry在逻辑上把区串联起来。通过XDES Entry所在页以及页内偏量可以计算出XDES Entry与它管理的物理空间区的关系。
页是物理存储IO操作的最小单元。它也是从文件第一个字节开始按相同大小划分。表是通过索引的方式组织数据,聚集索引元数据中存储了此表对就的Root page No。页是有编号的,通过编号就可与物理空间建立关联。
段、区都是为了管理空间的存储状态,为页分配空间服务,真正的查询只需要通过Page No和B+树中各级节点的关联关系就可以操作整个表物理空间上的数据。
行是最终存储业务数据的物理单元。默认一页16K,可以存储大概1000多行索引数据(非叶子节点),或者20行甚至更多的业务数据(叶子节点)。页之间通过B+树的“二分找查(假设为多分)”算法快速定位数据,页内则通过 Page Directory,把多行分一组,一组对应Page Directory有序数组中的一个slot,这样可以在页内进行一次“二分查找”优化。
为了记录行本身的状态,一条记录innodb会增加额外的记录头信息。如果是叶子节点,还会增加:row_id(隐藏的主键)、trx_id(事务id)、回滚指针等附加字段。
通过从InnoDB存储空间分布,delete对性能的影响可以看到,delete物理删除既不能释放磁盘空间,而且会产生大量的碎片,导致索引频繁分裂,影响SQL执行计划的稳定性;
同时在碎片回收时,会耗用大量的CPU,磁盘空间,影响表上正常的DML操作。
在业务代码层面,应该做逻辑标记删除,避免物理删除;为了实现数据归档需求,可以用采用MySQL分区表特性来实现,都是DDL操作,没有碎片产生。
另外一个比较好的方案采用Clickhouse,对有生命周期的数据表可以使用Clickhouse存储,利用其TTL特性实现无效数据自动清理。