由于Spark的计算本质是基于内存的,所以Spark性能程序的性能可能因为集群中的任何因素出现瓶颈:CPU、网络带宽、或者是内存。如果内存能够容纳得下所有的数据,那么网络传输和通信就会导致性能出现瓶颈。但是如果内存比较紧张,不足以放下所有的数据(比如在针对10亿以上的数据量进行计算时),还是需要对内存的使用进行性能优化的,比如说使用一些手段来减少内存的消耗。

Spark性能优化,其实主要就是在于对内存的使用进行调优。因为通常情况下来说,如果你的Spark应用程序计算的数据量比较小,并且你的内存足够使用,那么只要运维可以保障网络通常,一般是不会有大的性能问题的。但是Spark应用程序的性能问题往往出现在针对大数据量(比如10亿级别)进行计算时出现,因此通常来说,Spark性能优化,主要是对内存进行性能优化。当然,除了内存调优之外,还有很多手段可以优化Spark应用程序的性能。

Spark的性能优化,主要手段包括:
1、使用高性能序列化类库
2、优化数据结构
3、对多次使用的RDD进行持久化 / Checkpoint
4、使用序列化的持久化级别
5、Java虚拟机垃圾回收调优
6、提高并行度
7、广播共享数据
8、数据本地化
9、reduceByKey和groupByKey的合理使用
10、Shuffle调优(核心中的核心,重中之重)

实际上Spark到目前为止,在大数据业界的影响力和覆盖度,还远没有达到Hadoop的水平,——虽然说,我们之前一再强调,Spark Core、Spark SQL、Spark Streaming,可以替代MapReduce、Hive查询引擎、Storm。但是事实就是,Spark还没有达到已经替代了它们的地步。

根据我在研究Spark,并且在一线使用Spark,与大量行业内的大数据相关从业人员沟通的情况来看。Spark最大的优点,其实也是它目前最大的问题——基于内存的计算模型。Spark由于使用了基于内存的计算模型,因此导致了其稳定性,远远不如Hadoop。虽然我也很喜欢和热爱Spark,但是这就是事实,Spark的速度的确达到了hadoop的几倍、几十倍、甚至上百倍(极端情况)。但是基于内存的模型,导致它经常出现各种OOM(内存溢出)、内部异常等问题。

说一个亲身经历的例子,曾经用Spark改写几个复杂的MapReduce程序,虽然MapReduce很慢,但是它很稳定,至少慢慢跑,是可以跑出来数据的。但是用Spark Core很快就改写完了程序,问题是,在整整半个月之内,Spark程序根本跑不起来,因为数据量太大,10亿+。导致它出现了各种各样的问题,包括OOM、文件丢失、task lost、内部异常等等各种问题。最后耗费了大量时间,最一个spark程序进行了大量的性能调优,才最终让它可以跑起来。

的确,用了Spark,比MapReduce的速度快了十倍,但是付出的代价是惨痛的,花了整整一个月的时间做这个事情。

1、诊断内存消耗

每个java对象,对象头会占用16个字节,主要包括一些对象的元信息。Java的String对象,内部使用char数组来保存字符,需要保存数组长度等信息,用utf-16编码,每个字符两个字节,10个字符的string,需要占用60个字节。Java中集合类型,比如HashMap和LinkedList,内部使用的是链表结构,所以对链表的每一个数据,都使用了Entry对象封装,Entry有对象头,还有指向下一个的指针,占用8个字节。封装类型。

这里有一个非常简单的办法来判断,你的spark程序消耗了多少内存。

1、首先,自己设置RDD的并行度,有两种方式:要不然,在parallelize()、textFile()等方法中,传入第二个参数,设置RDD的task / partition的数量;要不然,用SparkConf.set()方法,设置一个参数,spark.default.parallelism,可以统一设置这个application所有RDD的partition数量。

2、其次,在程序中将RDD cache到内存中,调用RDD.cache()方法即可。

3、最后,观察Driver的log,你会发现类似于:“INFO BlockManagerMasterActor: Added rdd_0_1 in memory on mbk.local:50311 (size: 717.5 KB, free: 332.3 MB)”的日志信息。这就显示了每个partition占用了多少内存。

4、将这个内存信息乘以partition数量,即可得出RDD的内存占用量。

2、高性能序列化类库优化

在任何分布式系统中,序列化都是扮演着一个重要的角色的。如果使用的序列化技术,在执行序列化操作的时候很慢,或者是序列化后的数据还是很大,那么会让分布式应用程序的性能下降很多。所以,进行Spark性能优化的第一步,就是进行序列化的性能优化。

Spark自身默认就会在一些地方对数据进行序列化,比如Shuffle。还有就是,如果我们的算子函数使用到了外部的数据(比如Java内置类型,或者自定义类型),那么也需要让其可序列化。

而Spark自身对于序列化的便捷性和性能进行了一个取舍和权衡。默认,Spark倾向于序列化的便捷性,使用了Java自身提供的序列化机制——基于ObjectInputStream和ObjectOutputStream的序列化机制。因为这种方式是Java原生提供的,很方便使用。

但是问题是,Java序列化机制的性能并不高。序列化的速度相对较慢,而且序列化以后的数据,还是相对来说比较大,还是比较占用内存空间。因此,如果你的Spark应用程序对内存很敏感,那么,实际上默认的Java序列化机制并不是最好的选择。
Spark实际上提供了两种序列化机制,它只是默认使用了第一种:

1、Java序列化机制:默认情况下,Spark使用Java自身的ObjectInputStream和ObjectOutputStream机制进行对象的序列化。只要你的类实现了Serializable接口,那么都是可以序列化的。而且Java序列化机制是提供了自定义序列化支持的,只要你实现Externalizable接口即可实现自己的更高性能的序列化算法。Java序列化机制的速度比较慢,而且序列化后的数据占用的内存空间比较大。

2、Kryo序列化机制:Spark也支持使用Kryo类库来进行序列化。Kryo序列化机制比Java序列化机制更快,而且序列化后的数据占用的空间更小,通常比Java序列化的数据占用的空间要小10倍。Kryo序列化机制之所以不是默认序列化机制的原因是,有些类型虽然实现了Seriralizable接口,但是它也不一定能够进行序列化;此外,如果你要得到最佳的性能,Kryo还要求你在Spark应用程序中,对所有你需要序列化的类型都进行注册。

如果要使用Kryo序列化机制,首先要用SparkConf设置一个参数,使用new SparkConf().set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")即可,即将Spark的序列化器设置为KryoSerializer。这样,Spark在内部的一些操作,比如Shuffle,进行序列化时,就会使用Kryo类库进行高性能、快速、更低内存占用量的序列化了。

使用Kryo时,它要求是需要序列化的类,是要预先进行注册的,以获得最佳性能——如果不注册的话,那么Kryo必须时刻保存类型的全限定名,反而占用不少内存。Spark默认是对Scala中常用的类型自动注册了Kryo的,都在AllScalaRegistry类中。

但是,比如自己的算子中,使用了外部的自定义类型的对象,那么还是需要将其进行注册。

(实际上,下面的写法是错误的,因为counter不是共享的,所以累加的功能是无法实现的)
val counter = new Counter();
val numbers = sc.parallelize(Array(1, 2, 3, 4, 5))
numbers.foreach(num => counter.add(num));
如果要注册自定义的类型,那么就使用如下的代码,即可:

Scala版本:
val conf = new SparkConf().setMaster(...).setAppName(...)
conf.registerKryoClasses(Array(classOf[Counter] ))
val sc = new SparkContext(conf)

Java版本:
SparkConf conf = new SparkConf().setMaster(...).setAppName(...)
conf.registerKryoClasses(Counter.class)
JavaSparkContext sc = new JavaSparkContext(conf)

1、优化缓存大小
如果注册的要序列化的自定义的类型,本身特别大,比如包含了超过100个field。那么就会导致要序列化的对象过大。此时就需要对Kryo本身进行优化。因为Kryo内部的缓存可能不够存放那么大的class对象。此时就需要调用SparkConf.set()方法,设置spark.kryoserializer.buffer.mb参数的值,将其调大。

默认情况下它的值是2,就是说最大能缓存2M的对象,然后进行序列化。可以在必要时将其调大。比如设置为10。

2、预先注册自定义类型
虽然不注册自定义类型,Kryo类库也能正常工作,但是那样的话,对于它要序列化的每个对象,都会保存一份它的全限定类名。此时反而会耗费大量内存。因此通常都建议预先注册号要序列化的自定义的类。
首先,这里讨论的都是Spark的一些普通的场景,一些特殊的场景,比如RDD的持久化,在后面会讲解。这里先不说。

那么,这里针对的Kryo序列化类库的使用场景,就是算子函数使用到了外部的大数据的情况。比如说吧,我们在外部定义了一个封装了应用所有配置的对象,比如自定义了一个MyConfiguration对象,里面包含了100m的数据。然后,在算子函数里面,使用到了这个外部的大对象。

此时呢,如果默认情况下,让Spark用java序列化机制来序列化这种外部的大对象,那么就会导致,序列化速度缓慢,并且序列化以后的数据还是比较大,比较占用内存空间。

因此,在这种情况下,比较适合,切换到Kryo序列化类库,来对外部的大对象进行序列化操作。一是,序列化速度会变快;二是,会减少序列化后的数据占用的内存空间。

 3、优化数据结构

要减少内存的消耗,除了使用高效的序列化类库以外,还有一个很重要的事情,就是优化数据结构。从而避免Java语法特性中所导致的额外内存的开销,比如基于指针的Java数据结构,以及包装类型。

有一个关键的问题,就是优化什么数据结构?其实主要就是优化你的算子函数,内部使用到的局部数据,或者是算子函数外部的数据。都可以进行数据结构的优化。优化之后,都会减少其对内存的消耗和占用。
1、优先使用数组以及字符串,而不是集合类。也就是说,优先用array,而不是ArrayList、LinkedList、HashMap等集合。

比如,有个List<Integer> list = new ArrayList<Integer>(),将其替换为int[] arr = new int[]。这样的话,array既比List少了额外信息的存储开销,还能使用原始数据类型(int)来存储数据,比List中用Integer这种包装类型存储数据,要节省内存的多。

还比如,通常企业级应用中的做法是,对于HashMap、List这种数据,统一用String拼接成特殊格式的字符串,比如Map<Integer, Person> persons = new HashMap<Integer, Person>()。可以优化为,特殊的字符串格式:id:name,address|id:name,address...。
2、避免使用多层嵌套的对象结构。比如说,public class Teacher { private List<Student> students = new ArrayList<Student>() }。就是非常不好的例子。因为Teacher类的内部又嵌套了大量的小Student对象。

比如说,对于上述例子,也完全可以使用特殊的字符串来进行数据的存储。比如,用json字符串来存储数据,就是一个很好的选择。

{"teacherId": 1, "teacherName": "leo", students:[{"studentId": 1, "studentName": "tom"},{"studentId":2, "studentName":"marry"}]}

3、对于有些能够避免的场景,尽量使用int替代String。因为String虽然比ArrayList、HashMap等数据结构高效多了,占用内存量少多了,但是之前分析过,还是有额外信息的消耗。比如之前用String表示id,那么现在完全可以用数字类型的int,来进行替代。

这里提醒,在spark应用中,id就不要用常用的uuid了,因为无法转成int,就用自增的int类型的id即可。(sdfsdfdf-234242342-sdfsfsfdfd)

4、将多次使用的rdd进行持久化或者checkpoint

spark 源码优化 spark性能优化_垃圾回收

 5、使用序列化的持久化级别

除了对多次使用的RDD进行持久化操作之外,还可以进一步优化其性能。因为很有可能,RDD的数据是持久化到内存,或者磁盘中的。那么,此时,如果内存大小不是特别充足,完全可以使用序列化的持久化级别,比如MEMORY_ONLY_SER、MEMORY_AND_DISK_SER等。使用RDD.persist(StorageLevel.MEMORY_ONLY_SER)这样的语法即可。

这样的话,将数据序列化之后,再持久化,可以大大减小对内存的消耗。此外,数据量小了之后,如果要写入磁盘,那么磁盘io性能消耗也比较小。

对RDD持久化序列化后,RDD的每个partition的数据,都是序列化为一个巨大的字节数组。这样,对于内存的消耗就小的多了。但是唯一的缺点就是,获取RDD数据时,需要对其进行反序列化,会增大其性能开销。

因此,对于序列化的持久化级别,还可以进一步优化,也就是说,使用Kryo序列化类库,这样,可以获得更快的序列化速度,并且占用更小的内存空间。但是要记住,如果RDD的元素(RDD<T>的泛型类型),是自定义类型的话,在Kryo中提前注册自定义类型。

6、java虚拟机垃圾回收调优

1、使用高效的数据结构。2、使用序列化的持久化级别

 垃圾回收作用

spark 源码优化 spark性能优化_spark 源码优化_02

如果在持久化RDD的时候,持久化了大量的数据,那么Java虚拟机的垃圾回收就可能成为一个性能瓶颈。因为Java虚拟机会定期进行垃圾回收,此时就会追踪所有的java对象,并且在垃圾回收时,找到那些已经不在使用的对象,然后清理旧的对象,来给新的对象腾出内存空间。

垃圾回收的性能开销,是跟内存中的对象的数量,成正比的。所以,对于垃圾回收的性能问题,首先要做的就是,使用更高效的数据结构,比如array和string;其次就是在持久化rdd时,使用序列化的持久化级别,而且用Kryo序列化类库,这样,每个partition就只是一个对象——一个字节数组。

垃圾回收监测

我们可以对垃圾回收进行监测,包括多久进行一次垃圾回收,以及每次垃圾回收耗费的时间。只要在spark-submit脚本中,增加一个配置即可,--conf "spark.executor.extraJavaOptions=-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"。

但是要记住,这里虽然会打印出Java虚拟机的垃圾回收的相关信息,但是是输出到了worker上的日志中,而不是driver的日志中。

但是这种方式也只是一种,其实也完全可以通过SparkUI(4040端口)来观察每个stage的垃圾回收的情况。

垃圾回收手段

spark 源码优化 spark性能优化_spark 源码优化_03

spark 源码优化 spark性能优化_spark 源码优化_04

 

对于垃圾回收来说,最重要的就是调节RDD缓存占用的内存空间,与算子执行时创建的对象占用的内存空间的比例。默认情况下,Spark使用每个executor 60%的内存空间来缓存RDD,那么在task执行期间创建的对象,只有40%的内存空间来存放。

在这种情况下,很有可能因为你的内存空间的不足,task创建的对象过大,那么一旦发现40%的内存空间不够用了,就会触发Java虚拟机的垃圾回收操作。因此在极端情况下,垃圾回收操作可能会被频繁触发。

在上述情况下,如果发现垃圾回收频繁发生。那么就需要对那个比例进行调优,使用new SparkConf().set("spark.storage.memoryFraction", "0.5")即可,可以将RDD缓存占用空间的比例降低,从而给更多的空间让task创建的对象进行使用。

因此,对于RDD持久化,完全可以使用Kryo序列化,加上降低其executor内存占比的方式,来减少其内存消耗。给task提供更多的内存,从而避免task的执行频繁触发垃圾回收。

Java堆空间被划分成了两块空间,一个是年轻代,一个是老年代。年轻代放的是短时间存活的对象,老年代放的是长时间存活的对象。年轻代又被划分了三块空间,Eden、Survivor1、Survivor2。

首先,Eden区域和Survivor1区域用于存放对象,Survivor2区域备用。创建的对象,首先放入Eden区域和Survivor1区域,如果Eden区域满了,那么就会触发一次Minor GC,进行年轻代的垃圾回收。Eden和Survivor1区域中存活的对象,会被移动到Survivor2区域中。然后Survivor1和Survivor2的角色调换,Survivor1变成了备用。

如果一个对象,在年轻代中,撑过了多次垃圾回收,都没有被回收掉,那么会被认为是长时间存活的,此时就会被移入老年代。此外,如果在将Eden和Survivor1中的存活对象,尝试放入Survivor2中时,发现Survivor2放满了,那么会直接放入老年代。此时就出现了,短时间存活的对象,进入老年代的问题。

如果老年代的空间满了,那么就会触发Full GC,进行老年代的垃圾回收操作。

Spark中,垃圾回收调优的目标就是,只有真正长时间存活的对象,才能进入老年代,短时间存活的对象,只能呆在年轻代。不能因为某个Survivor区域空间不够,在Minor GC时,就进入了老年代。从而造成短时间存活的对象,长期呆在老年代中占据了空间,而且Full GC时要回收大量的短时间存活的对象,导致Full GC速度缓慢。

如果发现,在task执行期间,大量full gc发生了,那么说明,年轻代的Eden区域,给的空间不够大。此时可以执行一些操作来优化垃圾回收行为:
1、包括降低spark.storage.memoryFraction的比例,给年轻代更多的空间,来存放短时间存活的对象;
2、给Eden区域分配更大的空间,使用-Xmn即可,通常建议给Eden区域,预计大小的4/3;
3、如果使用的是HDFS文件,那么很好估计Eden区域大小,如果每个executor有4个task,然后每个hdfs压缩块解压缩后大小是3倍,此外每个hdfs块的大小是64M,那么Eden区域的预计大小就是:4 * 3 * 64MB,然后呢,再通过-Xmn参数,将Eden区域大小设置为4 * 3 * 64 * 4/3。

其实啊,根据经验来看,对于垃圾回收的调优,尽量就是说,调节executor内存的比例就可以了。因为jvm的调优是非常复杂和敏感的。除非是,真的到了万不得已的地方,然后呢,自己本身又对jvm相关的技术很了解,那么此时进行eden区域的调节,调优,是可以的。

一些高级的参数
-XX:SurvivorRatio=4:如果值为4,那么就是两个Survivor跟Eden的比例是2:4,也就是说每个Survivor占据的年轻代的比例是1/6,所以,你其实也可以尝试调大Survivor区域的大小。
-XX:NewRatio=4:调节新生代和老年代的比例

 

 7、提高并行度

spark 源码优化 spark性能优化_序列化_05

实际上Spark集群的资源并不一定会被充分利用到,所以要尽量设置合理的并行度,来充分地利用集群的资源。才能充分提高Spark应用程序的性能。

Spark会自动设置以文件作为输入源的RDD的并行度,依据其大小,比如HDFS,就会给每一个block创建一个partition,也依据这个设置并行度。对于reduceByKey等会发生shuffle的操作,就使用并行度最大的父RDD的并行度即可。

可以手动使用textFile()、parallelize()等方法的第二个参数来设置并行度;也可以使用spark.default.parallelism参数,来设置统一的并行度。Spark官方的推荐是,给集群中的每个cpu core设置2~3个task。

比如说,spark-submit设置了executor数量是10个,每个executor要求分配2个core,那么application总共会有20个core。此时可以设置new SparkConf().set("spark.default.parallelism", "60")来设置合理的并行度,从而充分利用资源。

8、广播共享数据

如果你的算子函数中,使用到了特别大的数据,那么,这个时候,推荐将该数据进行广播。这样的话,就不至于将一个大数据拷贝到每一个task上去。而是给每个节点拷贝一份,然后节点上的task共享该数据。

这样的话,就可以减少大数据在节点上的内存消耗。并且可以减少数据到节点的网络传输消耗。

spark 源码优化 spark性能优化_垃圾回收_06

 

9、数据本地化

数据本地化对于Spark Job性能有着巨大的影响。如果数据以及要计算它的代码是在一起的,那么性能当然会非常高。但是,如果数据和计算它的代码是分开的,那么其中之一必须到另外一方的机器上。通常来说,移动代码到其他节点,会比移动数据到代码所在的节点上去,速度要快得多,因为代码比较小。Spark也正是基于这个数据本地化的原则来构建task调度算法的。

数据本地化,指的是,数据离计算它的代码有多近。基于数据距离代码的距离,有几种数据本地化级别:
1、PROCESS_LOCAL:数据和计算它的代码在同一个JVM进程中。
2、NODE_LOCAL:数据和计算它的代码在一个节点上,但是不在一个进程中,比如在不同的executor进程中,或者是数据在HDFS文件的block中。
3、NO_PREF:数据从哪里过来,性能都是一样的。
4、RACK_LOCAL:数据和计算它的代码在一个机架上。
5、ANY:数据可能在任意地方,比如其他网络环境内,或者其他机架上。
Spark倾向于使用最好的本地化级别来调度task,但是这是不可能的。如果没有任何未处理的数据在空闲的executor上,那么Spark就会放低本地化级别。这时有两个选择:第一,等待,直到executor上的cpu释放出来,那么就分配task过去;第二,立即在任意一个executor上启动一个task。

Spark默认会等待一会儿,来期望task要处理的数据所在的节点上的executor空闲出一个cpu,从而将task分配过去。只要超过了时间,那么Spark就会将task分配到其他任意一个空闲的executor上。

可以设置参数,spark.locality系列参数,来调节Spark等待task可以进行数据本地化的时间。spark.locality.wait(3000毫秒)、spark.locality.wait.node、spark.locality.wait.process、spark.locality.wait.rack。

spark 源码优化 spark性能优化_序列化_07

`10、reduceByKey和groupByKey

val counts = pairs.reduceByKey(_ + _)

val counts = pairs.groupByKey().map(wordCounts => (wordCounts._1, wordCounts._2.sum))

如果能用reduceByKey,那就用reduceByKey,因为它会在map端,先进行本地combine,可以大大减少要传输到reduce端的数据量,减小网络传输的开销。

只有在reduceByKey处理不了时,才用groupByKey().map()来替代。

spark 源码优化 spark性能优化_spark 源码优化_08

spark 源码优化 spark性能优化_spark 源码优化_09

11、shuffle优化

new SparkConf().set("spark.shuffle.consolidateFiles", "true")

spark.shuffle.consolidateFiles:是否开启shuffle block file的合并,默认为false
spark.reducer.maxSizeInFlight:reduce task的拉取缓存,默认48m
spark.shuffle.file.buffer:map task的写磁盘缓存,默认32k
spark.shuffle.io.maxRetries:拉取失败的最大重试次数,默认3次
spark.shuffle.io.retryWait:拉取失败的重试间隔,默认5s
spark.shuffle.memoryFraction:用于reduce端聚合的内存比例,默认0.2,超过比例就会溢出到磁盘上

spark 源码优化 spark性能优化_垃圾回收_10

spark 源码优化 spark性能优化_数据_11