首先,Logistic不是纯粹的线性模型,他也可以说是一种概率估计的模型;他不是回归模型,而是一种二分类模型

class sklearn.linear_model.LogisticRegression(penalty='l2'dual=Falsetol=0.0001C=1.0fit_intercept=Trueintercept_scaling=1class_weight=Nonerandom_state=Nonesolver='liblinear'max_iter=100multi_class='ovr'verbose=0warm_start=Falsen_jobs=1)

penalty可以是第一范式,也可以是第二范式,从中文意思来说,就是惩罚因子

solver:'newton-cg','lbfgs','liblinear','sag','saga';这个参数非常非常重要了;就是最优化中用了什么方法,比如说这个sag就是平均随机梯度下降算法方式,总之很重要;newton-cg指的是牛顿法么,还是共轭下降....我不太确定和了解........

python广义加性模型 python 广义线性模型_python广义加性模型

max_iter当然有这个迭代次数....控制时间,精度啥的,太多的迭代也会出问题.....

PS:Logistic回归分成两个部分,第一个部分是Z=w0x0+w1x1+...+wnxn;将Z带入sigmod函数,如果sigmod(Z)>0.5 结果是1;sigmod(Z)<0.5 结果是0;所以为了使分类更加精确,使得Z这个输入更加完美(不可能让sigmod(Z)变得完美);所以就要使得Z=w0x0+w1x1+...+wnxn这个线性模型中的权值W变得更加完美。也就是我们说的最优化理论(使得一个可以用函数表达的式子的参数更好-->最优化理论帮忙)

Logistic 回归 工作原理

每个回归系数初始化为 1 重复 R 次: 计算整个数据集的梯度 使用 步长 x 梯度 更新回归系数的向量 返回回归系数

Logistic 回归 开发流程

收集数据: 采用任意方法收集数据 准备数据: 由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。 分析数据: 采用任意方法对数据进行分析。 训练算法: 大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。 测试算法: 一旦训练步骤完成,分类将会很快。 使用算法: 首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

Logistic 回归 算法特点

优点: 计算代价不高,易于理解和实现。 缺点: 容易欠拟合,分类精度可能不高。 适用数据类型: 数值型和标称型数据。

from numpy import *

def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not 
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def testLR():
    # 1.收集并准备数据
    dataMat, labelMat = loadDataSet()
    # print dataMat, '---\n', labelMat
    # 2.训练模型,  f(x)=a1*x1+b2*x2+..+nn*xn中 (a1,b2, .., nn).T的矩阵值
    # 因为数组没有是复制n份, array的乘法就是乘法
    dataArr = array(dataMat)
    # print dataArr
    weights = gradAscent(dataArr, labelMat)
    # print(weights)
    # weights = stocGradAscent0(dataArr, labelMat)
    # weights = stocGradAscent1(dataArr, labelMat)
    # print '*'*30, weights

    # 数据可视化
    plotBestFit(weights.getA())